Lecture 9 # Database Normalization COMP3278A Introduction to Database Management Systems Dr. Ping Luo Email: pluo@cs.hku.hk Department of Computer Science, The University of Hong Kong Acknowledgement: Dr Chui Chun Kit # Outcome based learning - Outcome 1. Information Modeling - Able to understand the modeling of real life information in a database system. - Outcome 2. **Query Languages** - Able to understand and use the languages designed for data access. - Outcome 3. System Design - Able to understand the design of an efficient and reliable database system. - Outcome 4. Application Development - Able to implement a practical application on a real database. ### Recap Armstrong's Axioms - We have 3 basic axioms. - **1.** Reflexivity if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$. - **2. Transitivity** if $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$. - **3.** Augmentation if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$. ### Recap Armstrong's Axioms - 3 more axioms to help easier prove! - **4.** Union if $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$. - **Solution** if $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$. - **a** 6. Pseudo-transitivity if $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$, then $\alpha\gamma \rightarrow \delta$. - 2 rules in tutorial! - **7.** Extensivity if $\alpha \rightarrow \beta$, then $\alpha \rightarrow \alpha\beta$. - **8.** Composition if $\alpha \rightarrow \beta$ and $\gamma \rightarrow \delta$, then $\alpha \gamma \rightarrow \beta \delta$. ### Attribute set closure at - \bigcirc Given a set F of FDs and a set of attributes α . - The closure of α (denoted as α⁺) is the set of attributes that can be functionally determined by α. Attribute set closure of A. $$F = \{A \rightarrow B, B \rightarrow C\}$$ $$\{A\}^+ = \{A, B, C\}$$ - **1.** $A \rightarrow A$ is always true (by **Reflexivity**). - **2.** $A \rightarrow B$ is given in F. - 3. $A \rightarrow C$ is derived from F: Given $A \rightarrow B$ and $B \rightarrow C$, $A \rightarrow C$ is also true (by Transitivity). ### Attribute set closure at - \bigcirc Given a set F of FDs and a set of attributes α . - The closure of α (denoted as α^+) is the set of attributes that can be functionally determined by α. Attribute set closure of A. $$F = \{A \rightarrow B, B \rightarrow C\}$$ $$\{A\}^{+} = \{A, B, C\}$$ $$\{B\}^{+} = \{B, C\}$$ $$\{C\}^{+} = \{C\}$$ $$\{A, B\}^{+} = \{A, B, C\}^{*}$$ Note that we only consider **single attribute**, not attribute sets (so we do not have AB, ABC, AC...etc in {A.B}+). - The set of ALL functional dependencies that can be logically implied by F is called the closure of F (or F+) - To compute F⁺ in a relation R: This is the attribute set closure. - **Step 1.** Treat every subset of **R** as α , - **Step 2.** For every α , compute α^+ . - **Step 3.** Use α as LHS, and generate an FD for every subset of α^+ on RHS. Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ . | N | S | Р | NS | NP | SP | NSP | |---|---|---|----|----|----|-----| **Step 1.** Treat every subset of **R** as α . Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ . | | N | S | Р | NS | NP | SP | NSP | |--------------------------|---------|---|---|----|----|----|-----| | Attribute
set closure | {N,S,P} | #### **Step 2.** For every α , compute α^+ . To find the attribute set closure {N}, use the attribute_closure() algorithm - 1. $result = {N}$ - 2. Consider the FDs with $\mathbb{N} \rightarrow \mathbb{S}$, $\mathbb{N} \rightarrow \mathbb{P}$, add S and P into *result*. - 3. $result = \{N,S,P\}$ Given a relation R(N, S, P) and the functional dependencies F = {N→S, N→P} find the FD closure F⁺. | | N | S | Р | NS | NP | SP | NSP | |--------------------------|---------|-----|-----|---------|---------|-------|---------| | Attribute
set closure | {N,S,P} | {S} | {P} | {N,S,P} | {N,S,P} | {S,P} | {N,S,P} | | | | | | | | | | | | | | | | | | | #### **Step 2.** For every α , compute α^+ . To find the attribute set closure {N}, use the attribute_closure() algorithm - 1. $result = {N}$ - 2. Consider the FDs with $\mathbb{N} \rightarrow \mathbb{S}$, $\mathbb{N} \rightarrow \mathbb{P}$, add S and P into *result*. - 3. $result = \{N,S,P\}$ Given a relation R(N, S, P) and the functional dependencies F = {N→S, N→P} find the FD closure F⁺. | | N | S | Р | NS | NP | SP | NSP | |--------------------------|---------|-----|-----|---------|---------|-------|---------| | Attribute
set closure | {N,S,P} | {S} | {P} | {N,S,P} | {N,S,P} | {S,P} | {N,S,P} | | | N→N | | | | | | | | | N→S | | | | | | | | | NAD | | | ı | I | · | l | $\begin{array}{ccc} & N \rightarrow P \\ & N \rightarrow NS \\ & N \rightarrow NP \\ & N \rightarrow SP \\ & N \rightarrow NSP \\ \end{array}$ **Step 3.** Use α as LHS, and generate an FD for every subset of α^+ on RHS. Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ . | | N | S | Р | NS | NP | SP | NSP | |--------------------------|--|-----|-----|---|--|-----------------------|--| | Attribute
set closure | {N,S,P} | {S} | {P} | {N,S,P} | {N,S,P} | {S,P} | {N,S,P} | | FD | $N \rightarrow N$ $N \rightarrow S$ $N \rightarrow P$ $N \rightarrow NS$ $N \rightarrow NP$ $N \rightarrow SP$ $N \rightarrow NSP$ | s→s | P→P | NS→N
NS→S
NS→P
NS→NS
NS→NP
NS→SP
NS→NSP | $NP \rightarrow N$ $NP \rightarrow S$ $NP \rightarrow NS$ $NP \rightarrow NP$ $NP \rightarrow SP$ $NP \rightarrow NSP$ | SP→S
SP→P
SP→SP | NSP→N
NSP→S
NSP→P
NSP→NS
NSP→NP
NSP→SP
NSP→NSP | # Concept - Decomposition - Lossless-join decomposition - Dependency preserving decomposition - Normal form Boyce-Codd Normal Form (BCNF) # Motivating example - Let's consider the following schema - Employees have eid (key), name, parkingLot. - Departments have did (key), dname, budget. - An employee works in exactly one department, since some date. - Employees who work in the same department must park at the same parkingLot. # Motivating example - Reduce to relational tables - Employees (<u>eid</u>, name, parkingLot, did, since) Foreign key: did references Departments(did) - Departments(did, dname, budget) **Observation:** In **Employees** table, whenever *did* is **1**, **parkingLot** must be "A"! **Implication:** The constraint "*Employees who work in the same department must park at the same parkingLot" is NOT utilized in the design!!! There are some redundancy in the Employees table.* | eid | name | parkingLot | did | since | |-----|--------|------------|-----|-----------| | 1 | Kit | А | 1 | 1/9/2014 | | 2 | Ben | В | 2 | 2/4/2010 | | 3 | Ernest | В | 2 | 30/5/2011 | | 4 | Betty | Α | 1 | 22/3/2013 | | 5 | David | Α | 1 | 4/11/2004 | | 6 | Joe | В | 2 | 12/3/2008 | | 7 | Mary | В | 2 | 14/7/2009 | | 8 | Wandy | Α | 1 | 9/8/2008 | | did | dname | budget | |-----|----------------|--------| | 1 | Human Resource | 4M | | 2 | Accounting | 3.5M | Yes! As parkingLot is "functionally depend" on did, we should not put parkingLot in the Employee table. # We are going to learn - **Database normalization** - The process of organizing the columns and tables of a relational database to minimize redundancy and dependency. - To make sure that every relation R is in a "good" form. - If R is not "good", decompose it into a set of relations $\{R_1,$ $R_2, ..., R_n$. the decomposition? Are there any guidelines / theories developed to decompose a relation? **Question:** How can we do Yes! The theories can be explained through functional dependencies ©. # Normalization goal - We would like to meet the following goals when we decompose a relation schema R with a set of functional dependencies F into $R_1, R_2, ..., R_n$ - 1. Lossless-join Avoid the decomposition result in information loss. - **2. Reduce redundancy** The decomposed relations R_i should be in **Boyce-Codd Normal Form (BCNF)**. 3. Dependency preserving – Avoid the need to join the decomposed relations to check the functional dependencies when new tuples are inserted into the database. ### Section 1 # Lossless-join Decomposition R | Α | В | С | |-------------|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 2
3
3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | Functional dependencies $$F = \{B \rightarrow C\}$$ Decompose $$R_1 = \pi_{A, B}(R)$$ | A | В | А | С | |---|---|---|---| | 1 | 1 | 1 | 3 | | 1 | 2 | 1 | 2 | | 2 | 1 | 2 | 3 | | 3 | 2 | 3 | 2 | | 3 | 1 | 3 | 3 | | 4 | 2 | 4 | 2 | | 4 | 1 | 4 | 3 | $R_2 = \pi_{A, C}(R)$ | The functional dependency $\mathbf{B} \rightarrow \mathbf{C}$ tells us | |--| | that for all tuples with the same value in B , | | there should be at most one corresponding | | value in C (E.g., If B=1, C =3; if B=2, C=2) | | Question: Will decomposing R(A,B,C) into | | $R_1(A,B)$ and $R_2(A,C)$ cause information lost? | #### Think in this way: Is this decomposition "lossless join decomposition"? I.e., Is there any information lost if we decompose **R** in this
way? R | Functional dependencies | R_1 | \bowtie | $R_2 = \pi_A$ | _{, B} (R) ⋈ | $\pi_{A, C}(R)$ | |-------------------------|-------|-----------|---------------|----------------------|-----------------| |-------------------------|-------|-----------|---------------|----------------------|-----------------| | Α | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | $F = \{B \rightarrow C\}$ Decompose $$R_1 = \pi_{A, B}(R)$$ | Α | В | |-------------|---| | 1 | 1 | | 1 | 2 | | 2 | 1 | | 2
3
3 | 2 | | 3 | 1 | | 4 | 2 | | 4 | 1 | | Α | С | |-------------|--------| | 1 | 3 | | 1 | 3
2 | | 2 | 3 | | 2
3
3 | 2 | | 3 | 3 | | 4
4 | | | 4 | 2 | | A | В | С | |----------------------------|----------------------------|---------------------------------| | 1 | 1 | 3 | | 1 | 1 | 2 | | 1 | 2 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 1
1
1
1
2
3 | 1
1
2
2
1
2 | 3
2
3
2
3
2 | | 3
3
4
4
4
4 | 2
1
1
2
2
1 | 3 | | 3 | 1 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 2 | 3
2
3
2
3
2
3 | | 4 | 1 | 2 | | 4 | 1 | 3 | To check if the decomposition will cause information lost, let's try to join $\mathbf{R_1}$ and $\mathbf{R_2}$ and see if we can recover \mathbf{R} . As we see that $R_1 \bowtie R_2 \neq R$, the decomposition has information lost. This is <u>NOT a lossless-join</u> decomposition. This is a bad decomposition R | Α | В | С | |--------|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4
4 | 2 | 2 | | 4 | 1 | 3 | | | | | Functional dependencies $$F = \{B \rightarrow C\}$$ | $R_1 \bowtie$ | $R_2 = \pi_{A_1}$ | $_{B}(R)\bowtie$ | $\pi_{B,C}(R)$ | |---------------|-------------------|------------------|----------------| |---------------|-------------------|------------------|----------------| | Α | В | С | |-------------|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 3
4
4 | 2 | 2 | | 4 | 1 | 3 | | | | | How about decomposing the relation R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$? Decompose $$R_1 = \pi_{A, B}(R)$$ | В | |---| | 1 | | 2 | | 1 | | 2 | | 1 | | 2 | | 1 | | | $$R_2 = \pi_{B, C}(R)$$ | В | С | |---|---| | 1 | 3 | | 2 | 2 | $R_1 \bowtie R_2 = R$, breaking down R to R_1 and R_2 in this way has no information lost. This decomposition is a lossless-join decomposition. R | А | В | С | |--------|---|-------------| | 1 | 1 | 3 | | 1 | 2 | 3
2
3 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3
4 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | | | | | Functional dependencies $$F = \{B \rightarrow C\}$$ What is/are the condition(s) for a decomposition to be lossless-join? #### **Example I** #### **NOT Lossless-join decomposition** $$R_1 = \pi_{A, B}(R)$$ $$R_2 = \pi_{A, C}(R)$$ | A | С | |---|---| | 1 | 3 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 3 | 3 | | 4 | 2 | #### **Example II** #### **Lossless-join decomposition** $$R_1 = \pi_{A, B}(R)$$ $R_2 = \pi_{B, C}(R)$ | Α | В | |---|---| | 1 | 1 | | 1 | 2 | | 2 | 1 | | 3 | 2 | | 3 | 1 | | u | |----| | П. | | П | | Α | В | С | |--------|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4
4 | 2 | 2 | | 4 | 1 | 3 | Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**. #### Example I NOT Lossless-join decomposition | $R_1 = \pi_{A, B}(R) \qquad R$ | $L_2 = \pi_{A, C}(R)$ | |--------------------------------|-----------------------| |--------------------------------|-----------------------| | | Α | В | | |---|---|---|--| | L | 1 | 1 | | | | 1 | 2 | | | | 2 | 1 | | | | 3 | 2 | | | | 3 | 1 | | | | 4 | 2 | | | | 1 | 1 | | | A | С | |---|---| | 1 | 3 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 3 | 3 | | 4 | 2 | | 4 | 3 | R | Α | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 3 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | Functional dependencies $$F = \{B \rightarrow C\}$$ | A | В | |---|---| | 1 | 1 | Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**. | Α | С | |---|---| | 1 | 3 | | 1 | 2 | Since $A \rightarrow AC$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_2 (e.g., (1,3), (1,2)). #### Example I NOT Lossless-join decomposition | $R_1 = \pi_{A, B}(R)$ | $R_2 = \pi_{A, C}(R$ | |-----------------------|----------------------| |-----------------------|----------------------| | 1 | Д | В | | |---|---|---|--| | | 1 | 1 | | | | 1 | 2 | | | | 2 | 1 | | | | 3 | 2 | | | | 3 | 1 | | | | 4 | 2 | | | | , | |---|---| | Α | C | | 1 | 3 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 3 | 3 | | 4 | 2 | | 4 | 3 | R | А | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | #### **Example I** **NOT Lossless-join** decomposition **Functional dependencies** $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with A=1, B=1. | Α | C | |---|---| | 1 | 3 | | 1 | 2 | Since $A \rightarrow AC$ is **NOT** a functional dependency in F+, there can be more than one tuples with A=1 in R_2 (e.g., (1,3), (1,2)). Therefore when we join R₁ and R₂, more than one tuples will be generated (i.e., (1,1) in R_1 combine with (1,3) and (1,2) in R₂) $$R_1 = \pi_{A, B}(R)$$ $R_2 = \pi_{A, C}(R)$ | | , | | , | |---|---|---|---| | Α | В | Α | С | | 1 | 1 | 1 | 3 | | 1 | 2 | 1 | 2 | | 2 | 1 | 2 | 3 | | 3 | 2 | 3 | 2 | | 3 | 1 | 3 | 3 | | 4 | 2 | 4 | 2 | | 4 | 1 | 4 | 3 | #### **Observation:** The decomposition of R(A,B,C) into $R_1(A,B)$ and $R_2(A,C)$ is NOT lossless-join because \rightarrow AC is **NOT** in F⁺, and ... (to be explained in the next slide) | × | |----------| | | | | | Α | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**. #### Example I NOT Lossless-join decomposition | $R_1 = \pi_{A, B}(R) \qquad R_2$ | $=\pi_{A,C}(R)$ | |----------------------------------|-----------------| |----------------------------------|-----------------| | A | В | |---|---| | 1 | 1 | | 1 | 2 | | 2 | 1 | | 3 | 2 | | 3 | 1 | | | _ | | A | C | |---|---| | 1 | 3 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 3 | 3 | | 4 | 2 | | 4 | 3 | R | А | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | # Example I NOT Lossless-join decomposition Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**. | Α | В | |---|---| | 1 | 1 | | 1 | 2 | Since $A \rightarrow AB$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_1 (i.e., (1,1), (1,2)). | $R_1 = \pi_{A, B}(R) \qquad R_2$ | $=\pi_{A,C}(R)$ | |----------------------------------|-----------------| |----------------------------------|-----------------| | | • | | |---|---|--| | Α | В | | | 1 | 1 | | | 1 | 2 | | | 2 | 1 | | | 3 | 2 | | | 3 | 1 | | | _ | _ | | | Α | C | |---|---| | 1 | 3 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 3 | 3 | | 4 | 2 | | 4 | 3 | R | Α | В | С | |--------|---|--------| | 1 | 1 | 3 | | 1 | 2 | 3
2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4
4 | 2 | 2 | | 4 | 1 | 3 | #### Example I NOT Lossi NOT Lossless-join decomposition Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**. | A | В | |---|---| | 1 | 1 | | 1 | 2 | Since $A \rightarrow AB$ is **NOT** a functional dependency in F⁺, there can be **more than one tuples** with A=1 in R_1 (i.e., (1,1), (1,2)). Therefore when we join R_1 and R_2 , more than one tuples will be generated (i.e., (1,3) in R_2 combine with (1,1) and (1,2) in R_1) $$R_1 = \pi_{A, B}(R)$$ $R_2 = \pi_{A, C}(R)$ #### **Observation:** The decomposition of R(A,B,C) into $R_1(\mathbf{A},B)$ and $R_2(\mathbf{A},C)$ is NOT lossless-join because A AC (explained in previous slide), and are **NOT** in F⁺. R | Α | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 3 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | Example II Lossless-join decomposition Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R_1 with A=1, B=1. $$R_1 = \pi_{A, B}(R)$$ $R_2 = \pi_{B, C}(R)$ | A | В | |---|---| | 1 | 1 | | 1 | 2 | | В | C | |---|---| | 1 | 3 | | 2 | 2 | | 1 | 1 | |---|---| | 1 | 2 | | 2 | 1 | | 3 | 2 | | 3 | 1 | | 4 | 2 | | | | R | Α | В | С | |-------------|---|---| | 1 | 1 | 3 | | 1 | 2 | 3 | | 2 | 1 | 3 | | | 2 | 2 | | 3
3
4 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | **Example II Lossless-join** decomposition **Functional dependencies** $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**. Since $\mathbf{B} \rightarrow \mathbf{BC}$ is a functional dependency in F+, there is only one tuple with B=1 in R₂. | $R_1 = \pi_{A, B}(R)$ | $R_2 = \pi_{B, C}(R)$ | |-----------------------|-----------------------| |-----------------------|-----------------------| | Α | В | |---|---| | 1 | 1 | | 1 | 2 | | 2 | 1 | | 1 | 1 | |---|---| | 1 | 2 | | 2 | 1 | | 3 | 2 | | 3 | 1 | | 4 | 2 | | 4 | 1 | R | А | В | С | |---|---|---| | 1 | 1 | 3 | | 1 | 2 | 2 | | 2 | 1 | 3 | | 3 | 2 | 2 | | 3 | 1 | 3 | | 4 | 2 | 2 | | 4 | 1 | 3 | Example II Lossless-join decomposition Functional dependencies $$F = \{B \rightarrow C\}$$ Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R_1
with A=1, B=1. | В | С | |---|---| | 1 | 3 | Since $B \rightarrow BC$ is a functional dependency in F^+ , there is only **one tuple** with B=1 in R_2 . Therefore when we join R₁ and R₂, there will be **ONLY ONE tuple generated**, and that must be the corresponding tuple (1,1,3) in R. $$R_1 = \pi_{A, B}(R)$$ $R_2 = \pi_{B, C}(R)$ | Α | В | В | С | |---|---|---|---| | 1 | 1 | 1 | 3 | | 1 | 2 | 2 | 2 | | 2 | 1 | | | | 3 | 2 | | | | 3 | 1 | | | | 4 | 2 | | | #### **Observation:** The decomposition of R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$ is lossless-join because $B \rightarrow BC$ is in F+. ### Testing for lossless-join decomposition - Consider a decomposition of R into R₁ and R₂. - \bigcirc Schema of R = schema of R₁ \cup schema of R₂. - **○** Let schema of $R_1 \cap$ schema of R_2 be R_1 and R_2 's common attributes. - \bigcirc A decomposition of R into R₁ and R₂ is lossless-join if and only if at least one of the following dependencies is in F⁺. Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1 OR Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_2 - Question: Given R(A,B,C), F={B→C}, is the following a lossless join decomposition of R? - Answer: To see if (R_1, R_2) is a lossless join decomposition of R, we do the following: - Find common attributes of R₁ and R₂: B - Verify if any of the FD below holds in F⁺, if one of the FD holds, then the decomposition is lossless join. $$B \rightarrow R_1$$ (i.e., $B \rightarrow AB$?) $B \rightarrow R_2$ (i.e., $B \rightarrow BC$?) ○ Since B → BC (by Augmentation rule on B → C), R_1 and R_2 are lossless join decomposition of R. ### Section 2 # Dependency preserving # Decomposition # Dependency preserving - When decomposing a relation, we also want to keep the functional dependencies. - A FD X → Y is preserved in a relation R if R contains all the attributes of X and Y. - If a dependency is lost when R is decomposed into R₁ and R₂: - When we insert a new record in R_1 and R_2 , we have to obtain $R_1 \bowtie R_2$ and check if the new record violates the lost dependency before insertion. - It could be very inefficient because joining is required in every insertion! # Dependency preserving - Onsider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$ - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs} | IX | | | | |----|---|---|---| | Α | В | С | D | | 1 | 1 | 3 | 4 | | 2 | 1 | 3 | 4 | | 3 | 2 | 2 | 3 | | 4 | 1 | 3 | 4 | | | | 1 | | - If R is decomposed to R₁(A,B), R₂(B,C,D): - \bigcirc $F_1 = \{A \rightarrow B, trivials\}, the projection of <math>F^+$ on R_1^{r} - \bigcirc F₂ = {B \rightarrow CD, trivials}, the projection of F⁺ on R₂ | $R_1 = \pi_{A, B}(R)$ | $R_2 = \pi_{B, C, D}$ | (R) | |-----------------------|-----------------------|-----| |-----------------------|-----------------------|-----| Decompose | _ | | | , | , | |---|---|---|---|---| | 1 | В | В | С | D | | L | 1 | 1 | 3 | 4 | | 2 | 1 | 2 | 2 | 3 | This is a dependency preserving decomposition as: $$(\mathsf{F}_1 \cup \mathsf{F}_2)^+ = \mathsf{F}^+$$ Let us illustrate the implication of dependency preserving in the next slide. - Consider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$ - Is this a lossless join decomposition? - Yes! As $B \rightarrow R_2$ (i.e., $B \rightarrow BCD$) holds in F^+ . That mean we can recover R by $R_1 \bowtie R_2$. - Why it is dependency preserving? #### Think about it... | İ |
 | 4 | | into | R_1 and R_2 : | |---|------|---|---|------|-------------------| | | _ | В | С | D | | | IŤ | we | insert | a | new | reco | r | |----|----|--------|---|-----|------|---| | | | | | Α. | В | | We need to check if the new record will make the database violate any FDs in F⁺. Is such decomposition allow us to do the validation on R₁ and R₂ ONLY? (But no need to join R₁ and R₂ to validate it?) - \bigcirc F⁺ = { A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivials} - \bigcirc Inserting tuple (5,1,4,4) violates B \rightarrow CD. - The decomposition is dependency preserving as we only need to check: - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ? This involves checking $F_1 = \{A \rightarrow B\}$. - Inserting 1 4 4 violate any F₂ in R₂? - This involves checking $F_2 = \{B \rightarrow CD\}$. We can check F_1 on R_1 and F_2 on R_2 only because $(F_1 \cup F_2)^+ = F^+$ | $R_1 = \pi_{A, B}(R) R_1$ | ₂ =π _{B, C, D} (R) | |---------------------------|--| |---------------------------|--| | A | В | В | С | D | |---|---|---|---|---| | 1 | 1 | 1 | 3 | 4 | | 2 | 1 | 2 | 2 | 3 | | 3 | 2 | 1 | 4 | 4 | | 4 | 1 | | | | | 5 | 1 | | | | Although among the two validations we haven't checked $A \rightarrow CD$, but since $A \rightarrow B$ is checked in F_1 , and $B \rightarrow CD$ is checked in F_2 , if we pass both F_1 and F_2 , it implies $A \rightarrow CD$. - What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$? - R is decomposed to $R_1(A,B)$, $R_2(A,C,D)$ - \rightarrow F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs} - ightharpoonup F₁ = {A ightharpoonup B, trivials}, the projection of F⁺ on R₁ - $F_2 = \{$ | _ | | | | |---|---|---|---| | $(A \rightarrow CD + rivials)$ the projection of C^{+} on | D | 1 | 1 | | $\{A \rightarrow CD, trivials\}$, the projection of F ⁺ on R ₂ | | | | | | | 3 | 2 | | is NOT a dependency preserving | | 4 | 1 | | is NOT a dependency preserving | | | | This is decomposition as: $$(F_1 \cup F_2)^+ \neq F^+$$ Let us illustrate the implication of NOT dependency preserving in the next slide. | • | • | | |-----------------------|---------------|-------------| | $R_1 = \pi_{A, B}(R)$ | $R_2 = \pi_A$ | $_{C,D}(R)$ | Decompose | Α | С | D | |---|---|---| | 1 | 3 | 4 | | 2 | 3 | 4 | | 3 | 2 | 3 | | 4 | 3 | 4 | - What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$? - Is this a lossless join decomposition? - Yes! As $A \rightarrow R_1$ (i.e., $A \rightarrow AB$) holds in F^+ . That mean we can recover R by $R_1 \bowtie R_2$. - Is it dependency preserving? #### Think about it... If we insert a new record | А | В | | ע | : | |---|---|---|---|-----| | 5 | 1 | 4 | 4 | III | | | | | | | ito R_1 and R_2 : We need to check if the new record will make the database violate any FDs in F⁺. Is such decomposition allow us to do the validation on R_1 and R_2 only (but no need to join R_1 and R_2)? | $1 A, B, \gamma Z A, C, D,$ | $R_1 = \pi_{A, B}(F$ | $R_2 = \pi_A$ | _{A, C, D} (R) | |--------------------------------|----------------------|---------------|------------------------| |--------------------------------|----------------------|---------------|------------------------| | A | В | | |---|---|--| | 1 | 1 | | | 2 | 1 | | | 3 | 2 | | | 4 | 1 | | | | _ · · | | |---|-------|---| | Α | С | D | | 1 | 3 | 4 | | 2 | 3 | 4 | | 3 | 2 | 3 | | 4 | 3 | 4 | | | | | - \bigcirc F⁺ = { A \rightarrow B, B \rightarrow CD, A \rightarrow CD } - \bigcirc Inserting tuple (5,1,4,4) violates B \rightarrow CD. - The decomposition is NOT dependency preserving as if we only check: - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ? This involves checking $F_1 = \{A \rightarrow B\}$. - Inserting $\begin{bmatrix} A & C & D \\ 5 & 4 & 4 \end{bmatrix}$ violate any F_2 in R_2 ? This involves checking $F_2 = \{A \rightarrow CD\}$. We CANNOT check F_1 on R_1 and F_2 on R_2 only because $(F_1 \cup F_2)^+ \neq F^+$ Decomposition in this way requires joining tables to validate B → CD for **EVERY INSERTION**! | $R_1 = \pi_{A, B}(R)$ | $R_2 = \pi_{A, C, D}$ | (R) | |-----------------------|-----------------------|-----| |-----------------------|-----------------------|-----| | Α | В | A | | |---|---|---|--| | 1 | 1 | 1 | | | 2 | 1 | 2 | | | 3 | 2 | 3 | | | 4 | 1 | 4 | | | 5 | 1 | 5 | | Although we passed F_1 and F_2 , it doesn't mean that we passed all FDs in F! It is because we lost the FD B →CD in the decomposition. What is the condition(s) for a decomposition to be **dependency preserving**? - Let F be a set of functional dependencies on R. - \bigcirc R₁, R₂, ..., R_n be a decomposition of R. - F_i be the set of FDs in F⁺ that include only attributes in R_i. - A decomposition is dependency preserving if and only if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$ Where F_i is the set of FDs in F^+ that include only attributes in R_i . - \bigcirc Given R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$ - \bigcirc Is $R_1(A, B)$, $R_2(B, C)$ a dependency preserving decomposition? - First we need to find F⁺, F₁ and F₂. - $F^+ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}$ Note that A→C is in F⁺ because of the **Transitivity axiom**. - \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true. - Since $F_1 \cup F_2 = F$, this implies $(F_1 \cup F_2)^+ = F^+$. - This decomposition is dependency preserving. - \bigcirc Given R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$ - \bigcirc Is $R_1(A, B)$, $R_2(A, C)$ a dependency preserving decomposition? - \bigcirc First we need to find F^+ , F_1 and F_2 . - $F^+ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}$ Note that A→C is in F⁺ because of the **Transitivity axiom**. - \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true. - Since B→C disappears in R₁ and R₂, $(F_1 \cup F_2)^+ \neq F^+$. - This decomposition is NOT dependency preserving. # Section 3 # Boyce-Codd Normal Form # FD and redundancy - Consider the following relation: - Customer(<u>id</u>, name, dptID) - \bigcirc F = { $\{id\} \rightarrow \{name, dptID\} \}$ | \sim | | | | | |--------|-----|------------|-----|----| | (l | ıst | O r | Mε | ٦r | | \sim | ィンし | U | 111 | | | id | name | dptID | |----|-------
-------| | 1 | Kit | 1 | | 2 | David | 1 | | 3 | Betty | 2 | | 4 | Helen | 2 | - {id} is a key in Customer. - Because the attribute closure of {id} (i.e., {id}+= {id, name, dptID}), which covers all attributes of Customer. # Observation: All non-trivial FDs in F form a key in the relation Customer. - This implies that there are no other FD that is just involve a subset of columns in the relation. - This implies that Customer has no redundancy. # FD and redundancy - As another example: - Customer(<u>id</u>, name, dptID, building) - $F = \{ \{id\} \rightarrow \{name, dptID, building\} \}$ $\{dptID\} \rightarrow \{building\} \}$ | _ | | | | |----|----|---|----| | us | το | m | er | | id | name | dptID | building | |----|-------|-------|----------| | 1 | Kit | 1 | CYC | | 2 | David | 1 | CYC | | 3 | Betty | 2 | HW | | 4 | Helen | 2 | HW | - \bigcirc {dptID} \rightarrow {building} brings redundancy. Why? - Tuples have the same dptID must have the same building (e.g., dptID=1, building="CYC"). - But those tuples can have different values in *id* and *name*. For each different *id* values with the same *dptID*, *building* will be repeated (redundancy) For example, for tuples with (*id*=1, # FD and redundancy - As another example: - Customer(<u>id</u>, name, dptID, building) - F = { {id} → {name, dptID, building} {dptID} → {building} } | | IJS | tn | m | er | |----------|-----|----|---|----| | <u> </u> | uJ | · | | CI | | id | name | dptID | building | |----|-------|-------|----------| | 1 | Kit | 1 | CYC | | 2 | David | 1 | CYC | | 3 | Betty | 2 | HW | | 4 | Helen | 2 | HW | - How to check? - Check if the attribute set closure of {dptID} covers all attributes in Customer. ({dptID}⁺ = {dptID, building} ≠ Customer) Redundancy is related to FDs. If there is an FD $\alpha \rightarrow \beta$, where $\{\alpha\}^+$ does not cover all attributes in R, then we will have redundancy in R! # **Boyce-Codd Normal Form** - Summarizing the observations, a relation R has no redundancy, or in Boyce-Codd Normal Form (BCNF), if the following is satisfied: - \bigcirc For all FDs in **F**⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds: We won't border with trivial FDs such as $$A \rightarrow A$$, $AB \rightarrow A$...etc i.e., The attribute set closure of α is a key (superkey) for R i.e., The attribute set closure of α , represented as $\{\alpha\}^+$, covers all attributes in \mathbf{R} . In other words, in BCNF, every non-trivial FD forms a key. #### Formally, for verifying if R is in BCNF - For each non-trivial dependency $\alpha \rightarrow \beta$ in **F**⁺ (the functional dependency closure), check if α ⁺ covers the whole relation (i.e., whether α is a superkey). - igoplus If any $lpha^+$ does not cover the whole relation, **R** is not in BCNF. #### Simplified test: It suffices to check only the dependencies in the given F for violation of BCNF, rather than check all dependencies in F⁺ For example, given R(A,B,C); $F = \{A \rightarrow B, B \rightarrow C\}$, we only need to check if both $\{A\}^+$ and $\{B\}^+$ cover $\{A,B,C\}$. We do not need to derive $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, ...etc\}$ and check each FD because $A \rightarrow C$ already considered when computing $\{A\}^+$. - When the However, if we decompose R into R_1 and R_2 , we cannot use only F to check if the "decomposed" relations (i.e., R_1 and R_2) is BCNF, we have to use F⁺ instead. - Illustration - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C} To test if **R** is in BCNF, it suffices to check only the dependencies in **F** (but not **F**⁺) | F | ? | | | | |---|---|---|---|---| | 4 | A | В | С | D | | | 1 | 1 | 1 | 1 | | | 1 | 1 | 1 | 2 | | | 1 | 1 | 1 | 3 | | | 1 | 1 | 1 | 4 | | | 1 | 1 | 1 | 5 | An example R that satisfies F As illustrated through this instance, since $\{A\}^+ = \{A,B,C\} \neq \{A,B,C,D\}$, this implies that it will cause redundancy when we have tuples with the same value across $\{ABC\}$ but different values in D. To illustrate why we cannot use only F to test decomposed relations for BCNF, let's try to decompose R into $R_1(A, B)$ and $R_2(A, C, D)$ - Illustration - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C} - \bigcirc Is $R_2(A, C, D)$ in BCNF? | R | | | | |---|---|---|---| | A | В | С | D | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 2 | | 1 | 1 | 1 | 3 | | 1 | 1 | 1 | 4 | | 1 | 1 | 1 | 5 | R₁(A, B) R₂(A, C, D) A B A C D 1 1 1 1 1 1 1 2 1 1 3 **No!** We need to use **F**⁺ to verify if **R**₂ is BCNF - \bigcirc In R₂(A, C, D), A \rightarrow C is in F⁺, because: - \bigcirc A \rightarrow C can be obtained by transitivity rule on A \rightarrow B and B \rightarrow C - \bigcirc There is a non trivial FD $A \rightarrow C$ in R_2 that we have missed! - Therefore in R₂ we check {A}⁺ = {A,C} ≠ {A,C,D} - Thus, A is not a key in R₂ - \bigcirc $\mathbf{R_2}$ is NOT in BCNF. **Conclusion:** When we test whether a **decomposed relation** is in BCNF, we must project F^+ onto the relation (e.g., R_2), not F! | R ₁ (A, B) | $R_2(A, C, D)$ | |-----------------------|----------------| | A B | A C D | | 1 1 | 1 1 1 | | | 1 1 2 | | | | # Section 4 # Normalization # Normalization goal - When we decompose a relation R with a set of functional dependencies F into $R_1, R_2, ..., R_n$, we try to meet the following goals: - 1. Lossless-join Avoid the decomposition result in information loss. - ② 2. No Redundancy The decomposed relations R_i should be in Boyce-Codd Normal Form (BCNF). (There are also other normal forms.) - 3. Dependency preserving Avoid the need to join the decomposed relations to check the functional dependencies. - Onsider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, is R in BCNF? If not, decompose R into relations that are in BCNF. - Is R in BCNF? - Because $\{B\}^+=\{B,C\} \neq \{A,B,C\}$ - A B C 1 1 2 2 1 2 3 1 2 4 1 2 - Since {B}+ does not cover all attributes in R, R is NOT in BCNF. How should we decompose **R** such that the decomposed relations are always lossless join? Note: A decomposition is lossless join if at least one of the following dependencies is in F⁺ Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1 OR Idea: To make the decomposition always lossless join, we can pick the FD $A \rightarrow B$ and make the decomposed relation as: - \bigcirc R₁(**A**,**B**) the attributes in the L.H.S. and R.H.S. of the FD. - Arr R₂(**A**,**C**) the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁. - If we decompose the relation R in this way the following must be true: #### Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1 - \bigcirc Schema of $R_1 \cap schema$ of R_2 is **A**. - \bigcirc A \rightarrow R₁= A \rightarrow AB must be true because R₁ must consists of the L.H.S. and R.H.S. of the FD A \rightarrow B in F. $$F = \{A \rightarrow B, B \rightarrow C\}$$ $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, trivial FDs\}$ | | R ₁ (A, B) | $R_2(A, C)$ | |----------------|-----------------------|-------------| | F _x | A → B | A→C | - Since $\{A\}^+ = \{A,B\} = R_1$, $\{A\}$ is a key in R_1 . - \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF. # R A B C 1 1 2 2 1 2 3 1 2 #### \bigcirc Is $R_2(A, C)$ in BCNF? - Since $\{A\}^+ = \{A,C\} = R_2, \{A\}$ is a key in R_2 . - Since all FDs in F₂ forms a key, R₂ is in BCNF. Therefore, decomposing R(A, B, C) with $F = \{A \rightarrow B, B \rightarrow C\}$ to $R_1(A, B)$ and $R_2(A, C)$ result in a lossless join decomposition (no information lost), and BCNF relations (no redundancy) - Is the decomposition dependency preserving? - \bigcirc F = {A \rightarrow B , B \rightarrow C} - $(F_1 \cup F_2) = (A \rightarrow B, A \rightarrow C)$ - Obline B \rightarrow C disappears in R₁ and R₂, $(F_1 \cup F_2)^+ \neq F^+$. - The decomposition is NOT dependency preserving. Note: Although the decomposition is not dependency preserving, but it is lossless join, so we can join R_1 and R_2 to test $B \rightarrow C$. ## **BCNF** decomposition algorithm ``` result = \{R\}; done = false; \alpha is not a key; compute F⁺; \alpha \rightarrow \beta causes R_i while (done == false) { to violate BCNF if (there is a schema R_i in result and R_i is not in BCNF) let \alpha \rightarrow \beta be a non-trivial FD that holds on R_i s.t. \{\alpha\}^+ \neq R_i result = (result -R_i) \cup (\alpha \beta) \cup (R_i - \beta) else 3. Create a relation containing done = true; R_i but with \beta removed. 2. Create a relation with only \alpha and \beta 1. Delete R_i ``` Each R_i is in BCNF, and the decomposition must be lossless-join | | R ₁ (B, C) | R ₂ (A, B) | |---------|-----------------------|-----------------------| | F_{x} | $B \rightarrow C$ | A→B | Consider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, decompose R into relations that are in BCNF. **Alternative decomposition:** To make the decomposition always lossless join, we can pick the FD B→C and make the decomposed relation as: - $R_1(\mathbf{B},\mathbf{C})$ the attributes in the L.H.S. and R.H.S. of the FD. - $R_2(A,B)$ the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁. R_2 $$F = \{A \rightarrow B, B \rightarrow C\}$$ $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, \text{ trivial FDs}\}$ | | R ₁ (B, C) | $R_2(A, B)$ | |---------|-----------------------|-------------| | F_{x} | $B \rightarrow C$ | A→B | - Operation: $R_1(B, C)$, $R_2(A, B)$ - \bigcirc Is R₁(B, C) in BCNF? - Since $\{B\}^+ = \{B,C\} = R_1, \{B\} \text{ is a key in } R_1.$ - \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF. - \bigcirc Is $R_2(A, B)$ in BCNF? - Since $\{A\}^+ = \{A,B\} = R_2$, $\{A\}$ is a key in R_2 . - Since all FDs in F₂ forms a key, R₂ is
in BCNF. | | R ₁ (B, C) | R ₂ (A, B) | |---------|-----------------------|-----------------------| | F_{x} | $B \rightarrow C$ | A→B | - Is the decomposition lossless join? - From the illustration in example 1, the decomposition must be lossless join. - R A B C 1 1 2 2 1 2 3 1 2 4 1 2 - Is the decomposition dependency preserving? - \bigcirc F = {A \rightarrow B, B \rightarrow C} - $(F_1 \cup F_2) = (B \rightarrow C, A \rightarrow B)$ - Since $F = (F_1 \cup F_2)$, this implies $(F_1 \cup F_2)^+ = F^+$. - B C A B 1 2 1 1 2 1 R_2 - The decomposition is dependency preserving. - That means if we insert a new tuple, if the new tuple does not violate F₁ in R₁, and F₂ in R₂, it won't violate F⁺ in R. Consider a relation R in a bank: R (b_name, b_city, assets, c_name, l_num, amount) $F = \{ \{b_name\} \rightarrow \{assets, b_city\},$ $\{I \mid num\} \rightarrow \{amount, b \mid name\},$ $\{I_num, c_name\} \rightarrow \{all other attributes\}\}$ one $\{amount, b_name\}$ value. Each specific value in bname is corresponds to at most one {asset, **b** city value Each I num corresponds to at most **Decomposition** Each { I num, c name} corresponds to at most one {b name, b city, assets, amount } value. - With $\{b_name\} \rightarrow \{assets, b_city\}, \{b_name\}^+ \neq R$, R is not in BCNF. - Decompose R into $R_1(b_name, assets, b_city)$ and R₂(b_name, c_name, l_num, amount). - Is R₁(b_name, assets, b_city) in BCNF? - \bullet $F_1 = \{ \{b_name\} \rightarrow \{assets, b_city\}, trivial FDs \} \leftarrow {}^{Projection of F^+}_{on F_1}.$ - $igoplus \{b_name\}^+ = \{b_name, assets, b_city\} = R_1,$ so $\{b_name\}$ is a key in R_1 . - Since all FD in F₁ forms a key in R₁, R₁ is in BCNF. - Is R₂(b_name, c_name, l_num, amount) in BCNF? - $\{I_num\}^+ = \{I_num, amount, b_name\} \neq R_2,$ so $\{I_num\}$ is NOT a key in R_2 . - \bigcirc Since NOT all FD in F₂ forms a key in R₂, R₂ is NOT in BCNF. - Picking {I_num} → {amount, b_name}, R₂ is further decomposed into: - R₃(I_num, amount, b_name) - R₄(c_name, l_num) - Is R₃(I_num, amount, b_name) in BCNF? - $\{I_num\}^+ = \{I_num, amount, b_name\} = R_3$, so $\{I_num\}$ is a key in R_3 . - \bigcirc Since all FD in F₃ forms a key in R₃, R₃ is in BCNF. - Is R₄(c_name, l_num) in BCNF? - $F_4 = \{trivial FDs\}$ - \bigcirc Since all FD in F₄ forms a key in R₄, R₄ is in BCNF. - \bigcirc Now, R₁, R₃ and R₄ are in BCNF; - The decomposition is also lossless-join. Augmentation - The decomposition is also dependency preserving. ``` \{I_num\} \rightarrow \{b_name\} \dots (i) by Decomposition of \{I_num\} \rightarrow \{amount, b_name\} \{I_num\} \rightarrow \{assets, b_city\} \dots (ii) by Transitivity of (i) and \{b_name\} \rightarrow \{assets, b_city\} \{I_num\} \rightarrow \{b_name , assets, b_city, amount\} by Union of F₃ and (ii) \{I_num, c_name\} \rightarrow \{I_num , c_name, b_name , assets, b_city, amount\} by ``` - Therefore $F_1 \cup F_3 \cup F_4 = F$, which implies $(F_1 \cup F_3 \cup F_4)^+ = F^+$. - The decomposition is dependency preserving. #### BCNF doesn't imply dependency preserving - It is not always possible to get a BCNF decomposition that is dependency preserving. - R A B C 1 1 2 2 1 2 1 2 3 - Onsider R(A, B, C); $F = \{AB \rightarrow C, C \rightarrow B\}$ - There are two candidate keys: {AB}, and {AC}. - AB⁺ = {A,B,C} = R - AC⁺ = {A,B,C} = R - R is not in BCNF, since C is not a key. - Decomposition of R must fail to preserve AB > C. | | R_2 | | | R_1 | | |---------------|-------|---|---|-------|--| | | С | Α | В | Α | | | Not lossless | 2 | 1 | 1 | 1 | | | decomposition | 2 | 2 | 1 | 2 | | | | 2 | 1 | 1 | 1 | | # Motivating example - Back to our motivating example, we have: - Employees(eid, name, parkingLot, did, since) - Departments(did, dname, budget) - "Employees who work in the same department must park at the same parkingLot." implies the following FD: FD: did → parkingLot - Is Employees in BCNF? - \bigcirc {did}⁺ = {parkingLot} \neq {eid, name, parkingLot, did, since} - Since did is not a key, Employees is NOT in BCNF. ## Normalization - Employees(<u>eid</u>, name, parkingLot, did, since) is decomposed to - Employees2(eid, name, did, since) - Dept_Lots(did, parkingLot) - With Departments (<u>did</u>, dname, budget), the above two decomposed relations are further refined to - Employees2(eid, name, did, since) - Departments(did, dname, parkingLot, budget) # Summary - Relational database design goals - Lossless-join - No redundancy (BCNF) - Dependency preservation - It is not always possible to satisfy the three goals. - A lossless join, dependency preserving decomposition into BCNF may not always be possible. - SQL does not provide a direct way of specifying FDs other than superkeys. - Can use assertions to check FD, but it is quite expensive. Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? - a. {A,C} is a candidate key for R. - b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition. Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? - a. {A,C} is a candidate key for R. - b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - c. T decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition. **Question:** How to test if {A,C} is a **candidate key** of R or not? Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? - a. {A,C} is a candidate key for R. - b. The decomposition of $R \rightarrow R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - c. T decomposition of R int. R and $R_2(B,C)$ is a lossless-join decomposition. **Question:** How to test if {A,C} is a **candidate key** of R or not? #### **Answer:** - 1) [Superkey] A candidate key is a superkey. If {A,C} is a superkey, its attribute closure {A,C}+ must contains all attributes in R! - 2) [Minimal] If {A,C} is minimal, it is a candidate key! #### Is {A,C} a superkey? - 1) Find attribute closure of A: $\{A\}^+ = \{A,B\}$. It is not a superkey. - 2) Find attribute closure of C: $\{C\}^+ = \{C\}$. It is not a superkey. - 3) Find attribute closure of $\{A,C\}$: $\{A,C\}^+ = \{A,B,C\}$. Since it contains all attributes of R, it is a superkey. #### Is {A,C} minimal? 4) Since none of subset of {A,C} is a key, {A,C} is minimal, it is a candidate key. Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? - a. {A,C} is a candidate key for R. - b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition. **Question:** What do we mean by lossless-join decomposition? **Question:** How to test if a decomposition is lossless-join decomposition? 1) Common attribute of R₁ and R₂: **Answer:** A decomposition is **lossless-join decomposition** if the original relation can be obtained after joining the decomposed relations. **Answer:** A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F⁺: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? {A,C} is a candidate key for R. - The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - Deduction of R into $R_1(A, L, L)$ (B.C) is a lossless-join composition. Question: What do we mean by lossless-join decomposition? **Question:** How to test if a decomposition is lossless-join decomposition? - 1) Common attribute of R_1 and R_2 : - 2) $A \rightarrow AB$ in F^+ ? Since $A \rightarrow B$, $A \rightarrow AB$ is true (Augmentation), $A \rightarrow AB$ in F^{+} ! 3) Therefore, the decomposition is a lossless-join decomposition. **Answer:** A decomposition is **lossless-join decomposition** if the original relation can be obtained after joining the decomposed relations. **Answer:** A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F+: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, which of the following statements is/are correct? - a. {A,C} is a candidate key for R. - **/** - b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. - c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition. **Question:** How to test if a decomposition is lossless-join decomposition? 1) Common attribute of R₁ and R₂: **Answer:** A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F⁺: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct? {A,C} is a candidate key for R. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition. The decomposition of R into R₁(A,B) and R₂(B,C) is a lossless-join decomposition. **Ouestion:** How to test if a decomposition is lossless-join decomposition? - 1) Common attribute of R_1 and R_2 : - 2) $\mathbf{B} \rightarrow \mathbf{AB}$ in \mathbf{F}^+ ? - 3)
$\mathbf{B} \rightarrow \mathbf{BC}$ in \mathbf{F}^+ ? - **Answer:** A decomposition is lossless-join decomposition - iff at least one of the following dependencies is in F*: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 4) Therefore, the decomposition is **NOT** a lossless-join decomposition. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)? - A. A. - B. Question: What do we mean by - C. D. the attribute closure of C? - D. E. - E. None of the above. **Answer:** The attribute closure of C is the set of attributes that can be functionally determined by C. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)? - B. B. - C. D. - D. E **Question:** What do we mean by the attribute closure of C? **Answer:** The attribute closure of C is the set of attributes that can be functionally determined by C. - E. None of the above. - Question: C→A holds? - 1. Since $C \rightarrow AB$, - 2. $C \rightarrow A$ and $C \rightarrow B$ (decomposition) Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)? **Question:** What do we mean by the attribute closure of C? **Answer:** The attribute closure of C is the set of attributes that can be functionally determined by C. - E. None of the above. - Question: C→B holds? - 1. Since $C \rightarrow AB$, - 2. $C \rightarrow A$ and $C \rightarrow B$ (decomposition) Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)? D. E. **Question:** What do we mean by the attribute closure of C? **Answer:** The attribute closure of C is the set of attributes that can be functionally determined by C. E. None of the above. Question: C→D holds? #### Think in this way: - 1. Since we have BCE \rightarrow D, can we have C \rightarrow BCE? - 2. We have $C \rightarrow B$, therefore $C \rightarrow BC$ (augmentation), can we show that $C \rightarrow E$? - 3. Since $C \rightarrow A$ and $A \rightarrow E$, $C \rightarrow E$ (transitivity) - 4. Since $C \rightarrow BC$ and $C \rightarrow E$, $C \rightarrow BCE$ (union) - 5. Since $C \rightarrow BGE$ and $BCE \rightarrow D$, $C \rightarrow D$ (transitivity) Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 0 $\{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Which of the following attributes is NOT in the attribute closure of C (i.e., C+)? - - None of the above. **Question:** What do we mean by **Answer:** The attribute closure of C is the attribute closure of C? the set of attributes that can be functionally determined by C. #### Question: C > E holds? #### Think in this way: - 1. Since we have BCE \rightarrow D, can we have C \rightarrow BCE? - 2. We have $C \rightarrow B$, therefore $C \rightarrow BC$ (augmentation), can we show that $C \rightarrow E$? - 3. Since $C \rightarrow A$ and $A \rightarrow E$, $C \rightarrow E$ (transitivity) - 4. Since $C \rightarrow BC$ and $C \rightarrow E$, $C \rightarrow BCE$ (union) - 5. Since $C \rightarrow BGE$ and $BCE \rightarrow D$, $C \rightarrow D$ (transitivity) - Since C→AB, - $C \rightarrow A$ and $C \rightarrow B$ (decomposition) - Since $C \rightarrow A$ and $A \rightarrow E$, - C→E (transitivity) - Since $C \rightarrow B$ and $C \rightarrow E$, - $C \rightarrow BE (union)$ - Since C→BE, - C→BCE (augmentation) - Since BCE→D and C→BCE, - C→D (transitivity) - Hence, C⁺ = {A,B,C,D,E} - Answer: E Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)? - i. $BE \rightarrow D$ - ii. BD→ABCDE - iii. AB→D - iv. $CE \rightarrow A$ **Question:** What do we mean by the FD closure? **Answer:** The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺). Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)? $AB \rightarrow D$ $CE \rightarrow A$ iii. iv. **Question:** What do we mean by the FD closure? **Answer:** The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺). Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. • Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)? Answer: The set of all functional dependencies that can be logically implied by F is called the closure of F (or F⁺). #### Think in this way: - 1. Start from $BD \rightarrow AC$, can we make R.H.S. more close to ABCDE? - 2. BD \rightarrow ABCD (augmentation), can we show that ABCD \rightarrow ABCDE? - 3. Since $A \rightarrow E$, we have ABCD \rightarrow ABCDE (augmentation) - 4. Therefore, we can show that BD→ABCDE is true! Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)? **Question:** What do we mean by the FD closure? **Answer:** The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺). Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)? **Question:** What do we mean by the FD closure? **Answer:** The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺). #### Think in this way: - 1. We have $C \rightarrow AB$, and therefore we have $C \rightarrow A$ (decomposition); can we show that $CE \rightarrow C$? - 2. CE→C is always true due to reflexivity! - 3. Therefore, we have $CE \rightarrow C$ and $C \rightarrow A$, we can show that $CE \rightarrow A$ is true (transitivity)! Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Which of the following is/are candidate key(s) of R? - i. $\{B,E\}$ - ii. {B,D} - iii. {C,E} **Question:** How to show if a set of attribute is a **candidate key** or not? Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. Which of the following is/are candidate key(s) of R? **Question:** How to show if a set of attribute is a **candidate key** or not? Answer: 1) It has to be a super key. 2) It has to be minimal. Question: Does $\{B,E\}^+$ covers all attributes in R? i.e. BE \rightarrow ABCDE? Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. • Which of the following is/are candidate key(s) of R? **Question:** How to show if a set of attribute is a **candidate key** or not? Answer: 1) It has to be a super key. 2) It has to be minimal. Question: Does $\{B,D\}^+$ covers all attributes in R? i.e. $BD \rightarrow ABCDE$? #### Think in this way: - 1. BD \rightarrow BD must be true, therefore, we have to show - 1) $BD \rightarrow A$, 2) $BD \rightarrow C$, and 3) $BD \rightarrow E$. - 2. Since $BD \rightarrow AC$, $BD \rightarrow A$ and $BD \rightarrow C$ are true (decomposition) - 3. How about $BD \rightarrow E$? We have $A \rightarrow E$, can we show that $BD \rightarrow A$? - 4. BD \rightarrow A already shown to be true, so now we have BD \rightarrow A and A \rightarrow E, therefore BD \rightarrow E is true! Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. • Which of the following is/are candidate key(s) of R? **Question:** How to show if a set of attribute is a **candidate key** or not? Answer: 1) It has to be a super key. 2) It has to be minimal. - **1. Since we have already shown in part a) that** {C}+covers all attributes of R, therefore C is a candidate key of R. - 2. Hence, {C,E} must **NOT** be a candidate key of R because {C,E} is **not minimal**. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD
\rightarrow AC\}$ which hold in it. - Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct? - i. This is a lossless-join decomposition. - ii. The decomposition is dependency preserving. - iii. R_1 and R_2 are in BCNF. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. • Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct? - This is a lossless-join decomposition. - ii. The decomposition is dependency preserving. - iii. R_1 and R_2 are in BCNF. **Question:** How to test if a decomposition is lossless-join decomposition? **Answer:** A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F*: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 - 1. Common attribute of R_1 and R_2 is **{A,C}**. - 2. Test if any of the following FD are in F⁺: - 1. AC \rightarrow ABCD - 2. AC \rightarrow ACE - 3. Since $A \rightarrow E$, $AC \rightarrow ACE$ is true (augmentation). - 4. Therefore, this is a lossless-join decomposition. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct? - i. This is a lossless-join decomposition. - ii. The decomposition is dependency preserving. - iii R_1 and R_2 are in BCNF. **Question:** How to test if a decomposition is dependency preserving or not? **Answer:** A decomposition is dependency preserving iff: $$(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$$ Where F_i is the set of FDs in F^+ that include only attributes in R_i . - 1. Determine F_1 and F_2 , the projection of F^+ on R_1 and R_2 - 1. $F_1 = \{CD \rightarrow B, C \rightarrow ABD, BD \rightarrow AC\}.$ - 2. $F_2 = \{ A \rightarrow E, C \rightarrow AE \}.$ - 2. Although {BCE \rightarrow D, CD \rightarrow BE} are missing, but we know that {C}⁺= R, so we have C \rightarrow ABD in F₁ and C \rightarrow AE in F₂ - BCE \rightarrow D and CD \rightarrow BE both have C on L.H.S., so these two FDs are in $(F_1 \cup F_2)^+$ - 3. Therefore $(\mathbf{F}_1 \cup \mathbf{F}_2)^+ = \mathbf{F}^+$. - 97 - 4. Therefore, this decomposition is dependency preserving. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct? - i. This is a lossless-join decomposition. - ii. The decomposition is dependency preserving. - iii. R₁ and R₂ are in BCNF. **Question:** How to test if the decomposed relations are in BCNF? Test if R₁ is in BCNF: Answer: In BCNF, every non-trivial FD forms a key! - 1. Determine F_1 , the projection of F^+ on R_1 . - 1. $F_1 = \{CD \rightarrow B, C \rightarrow AB, BD \rightarrow AC, C \rightarrow D\}.$ - 2. Determine if all FDs in F_1 forms a key of R_1 . - 1. Is {CD} a key in R_1 ? Yes! Because {CD}+={ABCD} in R_1 , contains all attributes in R_1 . - 2. Is {C} a key in R₁? Yes! Because {C}+={ABCD} in R₁, contains all attributes in R₁. - 3. Is {BD} a key in R_1 ? Yes! Because {BD}+={ABCD}, contains all attributes in R_1 . - 3. Since all non-trivial FDs in F_1 forms a key, R_1 in BCNF. Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it. - Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct? - i. This is a lossless-join decomposition. - ii. The decomposition is dependency preserving. - \mathbf{X} iii. R_1 and R_2 are in BCNF. **Question:** How to test if the decomposed relations are in BCNF? Test if R₂ is in BCNF: - L. Determine F_2 , the projection of F^+ on R_2 . - 1. $F_2 = \{A \rightarrow E, C \rightarrow A\}.$ - 2. Determine if all FDs in F_2 forms a key of R_2 . - 1. Is {A} a key in R₂? No! Because {A}+={AE}, not covering all attributes in R₂. - 3. Since **not all non-trivial** FDs in F₂ forms a key, R₂ is NOT in BCNF. Answer: In BCNF, every non-trivial FD forms a key! Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema. - a) Find all candidate keys of R. Show your steps. - b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving? Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema. - a) Find all candidate keys of R. Show your steps. - Is C a candidate key? - Since C⁺ is {A, B, C, D, E}, C is a superkey, and since C is minimal, it is a candidate key. - Since C is a candidate key, any supersets of C are not candidate keys. - How about the combinations of other attributes? - C does not appear on the RHS of any non-trivial FD, therefore the value of C cannot be functionally determined by other attribute(s). - All combinations of other attributes (i.e. A,B,D, and E) cannot form a key. (Their attribute closure must not contain C) - Thus, R has only one candidate key, which is C. Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema. - b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving? - = R₁ (A,D), R₂ (B,C,D,E) - R1 in BCNF? - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$ - Is D a key in R₁? - Since D is a key in R_1 , all non-trivial FDs in F_1 forms a key, thus R_1 is in BCNF. - R2 in BCNF? - \Box F_2 is the projection of F^+ on R_2 : $F_2 = \{C \rightarrow BDE$, and the trivial FDs $\}$ - Is C a key in R_2 ? - Since C is a key in R₂, all non-trivial FDs in F₂ forms a key, thus R₂ is in BCNF. Step 1. Decompose R into two relations R_1 and R_2 , and make R_1 a BCNF. Look at $D \rightarrow A$ in F, make R_1 as (A,D). Then R_2 is (B,C,D,E). Why include D in R_2 ? In BCNF, every non-trivial FD forms a If not, further decompose it using Step 2. Check if R_1 and R_2 are in BCNF. 102 key! Step 1. Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema. - b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving? - = R₁ (A,D), R₂ (B,C,D,E) - R1 in BCNF? - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$ - □ Is D a key in R₁? - \square Since D is a key in R₁, all non-trivial FDs in F₁ forms a key, thus R₁ is in BCNF. - R2 in BCNF? - \Box F_2 is the projection of F^+ on R_2 : $F_2 = \{C \rightarrow BDE$, and the trivial FDs $\}$ - Is C a key in R₂? - Since C is a key in R_2 , all non-trivial FDs in F_2 forms a key, thus R_2 is in BCNF. - Is it a lossless-join decomposition? - □ Common attribute among R_1 and R_2 = D - \square D \rightarrow R₁ (i.e. AD) holds in F⁺ - Therefore it is a lossless-join decomposition. **Answer:** A decomposition is lossless-join decomposition iff - at least one of the following dependencies is in F⁺: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema. - b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving? - = R₁ (A,D), R₂ (B,C,D,E) - R1 in BCNF? - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$ - Is D a key in R₁? - Since D is a key in R_1 , all non-trivial FDs in F_1 forms a key, thus R_1 is in BCNF. - R2 in BCNF? - \Box F₂ is the projection of F⁺ on R₂: F₂ = {C \rightarrow BDE, and the trivial FDs} - Is C a key in R_2 ? - Since C is a key in R_2 , all non-trivial FDs in F_2 forms a key, thus R_2 is in BCNF. - Is it a lossless-join decomposition? - \square Common attribute among R₁ and R₂ = D - \square D \rightarrow R₁ (i.e. AD) holds in F⁺ - ☐ Therefore it is a lossless-join decomposition. - Is it a dependency preserving decomposition? - Since $(F_1 \cup F_2)^+ = F^+$, it is a dependency preserving decomposition. **Answer:** A decomposition is dependency preserving iff: $(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$ Where F_i is the set of FDs in F⁺ that include only attributes in Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } - a) Find A⁺ and C⁺. - b) Find a candidate key of R. - c) Is $B \rightarrow D$ in F^+ ? - d) Is $D \rightarrow BC$ in F^+ ? - e) Is $AC \rightarrow D$ in F^+ ? - f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving? - g) Is R in BCNF? If not, decompose R into relations in BCNF. Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } - a) Find A⁺ and C⁺. - $A^+ = \{AB\}$ - $C^+ = \{C\}$ - b) Find a candidate key of R. - AC or BC or CD Given R=(A, B, C, D), F={ $A
\rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } - c) Is $B \rightarrow D$ in F^+ ? - No. Because $B^+ = \{B\}$ - d) Is D \rightarrow BC in F⁺? - No. Because D⁺={ABD} - e) Is $AC \rightarrow D$ in F^+ ? - Yes. Because A→B and BC→D, we know that AC→D (pseudotransitivity) Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } - f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving? - Lossless? - $R_1 \cap R_2 = (B,C)$ - $(B,C) \rightarrow R_2$ - Hence, it is a lossless decomposition. **Question:** How to test if a decomposition is lossless-join decomposition? **Answer:** A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F*: - 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1 - 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2 Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } - f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving? - Lossless? - $-R_1 \cap R_2 = (B,C)$ - $(B,C) \rightarrow R_2$ - Hence, it is a lossless decomposition. - Dependency preserving? - $F_1 = \{A \rightarrow B\}; F_2 = \{BC \rightarrow D, D \rightarrow B\}$ - Since $(F_1 \cup F_2)^+$ does not equal to F^+ $(D \rightarrow A)$ is not preserved), the decomposition is not dependency preserving **Answer:** A decomposition is dependency preserving iff: $$(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$$ Where F_i is the set of FDs in F⁺ that include only attributes in R_i. Question: How to test if a decomposition is dependency preserving or not? Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } g) Is R in BCNF? If not, decompose R into relations in BCNF. - Is R in BCNF? - No. A→B and D→A violate BCNF as neither A nor D is a super key in R. **Question:** How to test if the decomposed relations are in BCNF? Answer: In BCNF, every non-trivial FD forms a key! Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } g) Is R in BCNF? If not, decompose R into relations in BCNF. - If not, decompose R into relations in BCNF. - Decompose R into R₁(A, B) and R₂(A, C, D) - R₁ is in BCNF? - $F_1 = \{A \rightarrow B\}$, A is a key in R1, R_1 is in BCNF! - $-R_2$ is in BCNF? - $F_2 = \{D \rightarrow A\}$, D is not a key in R_2 , R_2 is not in BCNF! Step 1. Decompose R into two relations R_1 and R_2 , and make R_1 a BCNF. Look at $A \rightarrow B$ in F, make R_1 as (A,B). Then R_2 is (A,C,D). Step 2. Check if R1 and R2 are in BCNF. If not, further decompose it using Step 1. In BCNF, every non-trivial FD forms a key! Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ } g) Is R in BCNF? If not, decompose R into relations in BCNF. - If not, decompose R into relations in BCNF. - Decompose R into R₁(A, B) and R₂(A, C, D) - R₁ is in BCNF? - $F_1 = \{A \rightarrow B\}$, A is a key in R1, R_1 is in BCNF! - $-R_2$ is in BCNF? - $F_2 = \{D \rightarrow A\}$, D is not a key in R_2 , R_2 is not in BCNF! - We further decompose R_2 into $R_3(A, D)$ and $R_4(C, D)$. - $-R_3$ is in BCNF? - $F_3 = \{D \rightarrow A\}$, D is a key in R_3 , R_3 is in BCNF! - $-R_{\Delta}$ is in BCNF? - $F_4 = \{\text{empty}\}, R_4 \text{ is in BCNF!}$ - Hence, we can decompose R into \mathbf{R}_{1}^{12} , \mathbf{R}_{3} and \mathbf{R}_{4} in BCNF.