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Outcome based learning
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Outcome 1. Information Modeling

Outcome 2. Query Languages

Outcome 3. System Design

Outcome 4. Application Development

Able to understand the modeling of real life information in a database 
system.

Able to understand and use the languages designed for data access.

Able to understand the design of an efficient and reliable database 
system.

Able to implement a practical application on a real database.



Recap Armstrong’s Axioms

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

We have 3 basic axioms.
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Recap Armstrong’s Axioms

3 more axioms to help easier prove!

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.
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2 rules in tutorial!

7. Extensivity - if → , then → .

8. Composition - if →  and → , then → .



Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as  α+) is the set of 
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

1. A→A is always true (by Reflexivity).

2. A→ B is given in F.

3. A→ C is derived from F:
Given A→ B and B→ C, A→ C is also true (by Transitivity).

= { A, B, C }{A}+
Attribute set 
closure of A. A, B , C
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Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as  α+) is the set of 
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

{B}+= { B, C }

{C}+= { C }

{A,B}+= { A, B, C }

Note that we only 
consider single 
attribute, not attribute 
sets (so we do not 
have AB, ABC, AC…etc 
in {A,B}+).

= { A, B, C }{A}+
Attribute set 
closure of A. A, B , C
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FD closure F+

The set of ALL functional dependencies that can be
logically implied by F is called the closure of F (or F+)

To compute F+ in a relation R:

Step 1. Treat every subset of R as α.
Step 2. For every α, compute α+.
Step 3. Use α as LHS, and generate an FD for every 
subset of α+ on RHS.

The fd_closure() algorithm

This is the attribute 
set closure.
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FD closure F+

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

N S P NS NP SP NSP

Step 1. Treat every subset of R as α.
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FD closure F+

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Step 2. For every α, compute α+.

Attribute 
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP
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FD closure F+

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 2. For every α, compute α+.
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FD closure F+

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 3. Use α as LHS, and generate an FD 
for every subset of α+ on RHS.

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP
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FD closure F+

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP

S→S P→P NS→N

NS→S

NS→P

NS→NS

NS→NP

NS→SP

NS→NSP

NP→N

NP→S

NP→P

NP→NS

NP→NP

NP→SP

NP→NSP

NSP→N

NSP→S

NSP→P

NSP→NS

NSP→NP

NSP→SP

NSP→NSP

SP→S

SP→P

SP→SP
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Concept

13

Decomposition

Lossless-join decomposition 

Dependency preserving decomposition

Normal form

Boyce-Codd Normal Form (BCNF)



Motivating example

Let’s consider the following schema

Employees have eid (key), name, parkingLot.

Departments have did (key), dname, budget.

An employee works in exactly one department, since some date.

Employees who work in the same department must park at 
the same parkingLot.

Works_inEmployees

eid

name

parkingLot
since

Departments

did

dname

budget
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Motivating example

eid name parkingLot did since

1 Kit A 1 1/9/2014
2 Ben B 2 2/4/2010
3 Ernest B 2 30/5/2011
4 Betty A 1 22/3/2013
5 David A 1 4/11/2004
6 Joe B 2 12/3/2008
7 Mary B 2 14/7/2009
8 Wandy A 1 9/8/2008

did dname budget

1 Human Resource 4M
2 Accounting 3.5M

Yes! As parkingLot is 
“functionally depend” on did, we 
should not put parkingLot in the 
Employee table.

Observation: In Employees table, whenever did is 1, parkingLot must be “A”!
Implication: The constraint “Employees who work in the same department 
must park at the same parkingLot” is NOT utilized in the design!!!
There are some redundancy in the Employees table.

Reduce to relational tables

Employees( eid, name, parkingLot, did, since)

Departments( did, dname, budget)

Foreign key: did references Departments(did)
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We are going to learn
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Yes! The theories 
can be explained 
through functional 
dependencies ☺.

Question: How can we do 
the decomposition?
Are there any guidelines / 
theories developed to 
decompose a relation?

Database normalization

The process of organizing the columns and tables of 
a relational database to minimize redundancy and 
dependency.

To make sure that every relation R is in a “good” form.

If R is not “good”, decompose it into a set of relations {R1, 
R2, …, Rn}.
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Normalization goal
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We would like to meet the following goals when we 
decompose a relation schema R with a set of 
functional dependencies F into R1, R2, …, Rn

1. Lossless-join – Avoid the decomposition result in 
information loss.

3. Dependency preserving – Avoid the need to join the 
decomposed relations to check the functional dependencies 
when new tuples are inserted into the database.

2. Reduce redundancy – The decomposed relations Ri should 
be in Boyce-Codd Normal Form (BCNF). 



Section 1

Lossless-join

Decomposition



Example 1

A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R

R1 = A, B(R) R2 = A, C(R)

Decompose 

F = {B→C}

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

The functional dependency B→C tells us 
that for all tuples with the same value in B, 
there should be at most one corresponding 
value in C (E.g., If B=1, C =3 ; if B=2, C=2)
Question: Will decomposing R(A,B,C) into 
R1(A,B) and R2(A,C) cause information lost?

Functional dependencies

Think in this way:
Is this decomposition “lossless join 
decomposition”?
I.e., Is there any information lost if 
we decompose R in this way?
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Example 1
= A, B(R) ⋈ A, C(R)

≠
R1 ⋈ R2

A B C
1 1 3
1 1 2
1 2 3
1 2 2
2 1 3
3 2 2

3 2 3
3 1 2
3 1 3
4 2 2
4 2 3
4 1 2
4 1 3

To check if the 
decomposition will cause 
information lost, let’s try to 
join R1 and R2 and see if we 
can recover R. 
As we see that R1 ⋈ R2 ≠ R, 
the decomposition has 
information lost. 
This is NOT a lossless-join 
decomposition.

A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R

R1 = A, B(R) R2 = A, C(R)

Decompose 

F = {B→C}

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

Functional dependencies

This is a bad 
decomposition
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Example 2

B C
1 3
2 2

=

R1 = A, B(R) R2 = B, C(R)

Decompose 

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

= A, B(R) ⋈ B, C(R)R1 ⋈ R2

How about 
decomposing the 
relation R(A,B,C) 
into R1(A,B) and 
R2(B,C)?

A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

Well done! Since 
R1 ⋈ R2 = R, breaking down 
R to R1 and R2 in this way 
has no information lost. 
This decomposition is a 
lossless-join decomposition.
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A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

B C
1 3
2 2

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R) R2 = B, C(R)

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R) R2 = A, C(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join decomposition Lossless-join decomposition

What is/are the condition(s) 
for a decomposition to be 
lossless-join?

Lossless-join decomposition

22
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A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

Let’s consider the first 
tuple (1,1,3) in R. 

Note that there is only 
ONE tuple in R1 with 
A=1, B=1.

R2 = A, C(R)

1
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Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

A C
1 3
1 2

Since A→AC is NOT a 
functional dependency 
in F+, there can be more 
than one tuples with 
A=1 in R2

(e.g., (1,3), (1,2) ) .

Let’s consider the first 
tuple (1,1,3) in R. 

Note that there is only 
ONE tuple in R1 with 
A=1, B=1.

R2 = A, C(R)

1 2
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Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

A C
1 3
1 2

A B C
1 1 3
1 1 2

=

Since A→AC is NOT a 
functional dependency 
in F+, there can be more 
than one tuples with 
A=1 in R2

(e.g., (1,3), (1,2) ) .

Let’s consider the first 
tuple (1,1,3) in R. 

Note that there is only 
ONE tuple in R1 with 
A=1, B=1.

Therefore when we join    
R1 and R2, more than one 
tuples will be generated 
(i.e., (1,1) in R1 combine 
with  (1,3) and (1,2) in R2 )

Observation:
The decomposition of R(A,B,C) into R1(A,B) and R2(A,C) 
is NOT lossless-join because

is NOT in F+ , and … (to be explained in the next slide)

A→ AC

R2 = A, C(R)

1 32
⋈
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Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A C
1 3

Let’s consider the 
first tuple (1,1,3) in R. 

Note that there is 
only ONE tuple in R2

with A=1, C=3.

R2 = A, C(R)

1
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Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A C
1 3

A B
1 1
1 2

Since A→AB is NOT a 
functional dependency 
in F+, there can be 
more than one tuples
with A=1 in R1

(i.e., (1,1), (1,2) ) .

Let’s consider the 
first tuple (1,1,3) in R. 

Note that there is 
only ONE tuple in R2

with A=1, C=3.

R2 = A, C(R)

1 2
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Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R)

A C
1 3
1 2
2 3
3 2
3 3
4 2
4 3

NOT Lossless-join 
decomposition

Lossless-join decomposition

A C
1 3

A B
1 1
1 2

A B C
1 1 3
1 2 3

Since A→AB is NOT a 
functional dependency 
in F+, there can be 
more than one tuples
with A=1 in R1

(i.e., (1,1), (1,2) ) .

Let’s consider the 
first tuple (1,1,3) in R. 

Note that there is 
only ONE tuple in R2

with A=1, C=3.

Therefore when we join 
R1 and R2, more than one 
tuples will be generated 
(i.e., (1,3) in R2 combine 
with  (1,1) and (1,2) in R1 )

Observation:
The decomposition of R(A,B,C) into R1(A,B) and R2(A,C) 
is NOT lossless-join because

are NOT in F+ .

A→ AC (explained in previous slide), and
A→ AB

R2 = A, C(R)

1

⋈
2

=
3

28

Example I



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

Let’s consider the 
first tuple (1,1,3) in R. 
Note that there is 
only ONE tuple in R1

with A=1, B=1.

B C
1 3
2 2

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R) R2 = B, C(R)

1
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Example II



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

B C
1 3

Since B→BC is a 
functional dependency 
in F+, there is only one 
tuple with B=1 in R2.

Let’s consider the 
first tuple (1,1,3) in R. 
Note that there is 
only ONE tuple in R1

with A=1, B=1.

B C
1 3
2 2

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R) R2 = B, C(R)

1 2
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Example II



A B C
1 1 3
1 2 2
2 1 3
3 2 2
3 1 3
4 2 2
4 1 3

R

F = {B→C}

Functional dependencies

Lossless-join 
decomposition

Lossless-join decomposition

A B
1 1

B C
1 3

A B C
1 1 3

Since B→BC is a 
functional dependency 
in F+, there is only one 
tuple with B=1 in R2.

Let’s consider the 
first tuple (1,1,3) in R. 
Note that there is 
only ONE tuple in R1

with A=1, B=1.

Therefore when we join R1

and R2, there will be ONLY 
ONE tuple generated, and 
that must be the 
corresponding tuple (1,1,3) 
in R.

B C
1 3
2 2

A B
1 1
1 2
2 1
3 2
3 1
4 2
4 1

R1 = A, B(R) R2 = B, C(R)

Observation:
The decomposition of R(A,B,C) into R1(A,B) and 
R2(B,C) is lossless-join because

is in F+ .
B→ BC

1 2
=

3
⋈
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Example II



Testing for lossless-join decomposition
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Consider a decomposition of R into R1 and R2.

Schema of R = schema of R1  schema of R2.

Let schema of R1  schema of R2 be R1 and R2’s 
common attributes.

Schema of R1  schema of R2 → schema of R1

Schema of R1  schema of R2 → schema of R2

OR

A decomposition of R into R1 and R2 is lossless-join if and 
only if at least one of the following dependencies is in F+ .



Example

Question: Given R(A,B,C), F={B→C}, is the following 
a lossless join decomposition of R?

R1(A, B) , R2(B, C)

Answer: To see if (R1, R2) is a lossless join 
decomposition of R, we do the following:

Find common attributes of R1 and R2 :

Since B → BC (by Augmentation rule on B→C ), R1 and R2 are 
lossless join decomposition of R.

B

B→ R1 (i.e., B → AB?)

Verify if any of the FD below holds in F+, if one of the FD 
holds, then the decomposition is lossless join.

B→ R2 (i.e., B → BC?)

33



Section 2

Dependency preserving

Decomposition



Dependency preserving

35

If a dependency is lost when R is decomposed into R1

and R2:

When we insert a new record in R1 and R2, we have to 
obtain R1⋈ R2 and check if the new record violates the lost 
dependency before insertion.

It could be very inefficient because joining is required in 
every insertion!

When decomposing a relation, we also want to keep 
the functional dependencies.

A FD X → Y is preserved in a relation R if R contains all the 
attributes of X and Y.



Dependency preserving
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Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4

R

Consider R(A,B,C,D), F = {A→ B, B→CD}

F+ = {A→ B, B→CD, A →CD, trivial FDs}

B C D
1 3 4
2 2 3

R2=B, C, D(R)R1 = A, B(R)

A B
1 1
2 1
3 2
4 1

Note that A→CD is in F+ because 
of the Transitivity axiom.

If R is decomposed to R1(A,B) , R2(B,C,D):

F1 = {A→ B, trivials}, the projection of F+ on R1

F2 = {B→ CD, trivials}, the projection of F+ on R2

This is a dependency preserving 
decomposition as:

(F1  F2)+ = F+

Let us illustrate the implication of 
dependency preserving in the next slide.  



Dependency preserving

37

Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4

R

Is this a lossless join decomposition?
Yes! As B→R2 (i.e., B→BCD) holds in F+.
That mean we can recover R by R1⋈ R2.

A B
5 1

R1 R2

If we insert a new record                                 into R1 and R2:
B C D
1 4 4

We need to check if the new record will make the database  
violate any FDs in F+. 
Is such decomposition allow us to do the validation on R1

and R2 ONLY? (But no need to join R1 and R2 to validate it?)

Think about it…
A B C D
5 1 4 4

B C D
1 3 4
2 2 3

R2=B, C, D(R)R1 = A, B(R)

A B
1 1
2 1
3 2
4 1

Consider R(A,B,C,D), F = {A→ B, B→CD}

F+ = {A→ B, B→CD, A →CD, trivial FDs}

Why it is dependency preserving?



Dependency preserving

B C D
1 3 4
2 2 3
1 4 4

R1 = A, B(R) R2=B, C, D(R)

A B
1 1
2 1
3 2
4 1
5 1

R

F+ = { A→ B, B→CD, A→CD , trivials}

Inserting tuple (5,1,4,4) violates B→CD. 

The decomposition is dependency 
preserving as we only need to check:

Inserting              violate any F1 in R1?
A B
5 1

Inserting                    violate any F2 in R2?
B C D
1 4 4

This involves checking F1={A→B}.  

This involves checking F2={B→CD}. 

Although among the two 
validations we haven’t checked 
A→CD, but since A→B is 
checked in F1, and B→CD is 
checked in F2, if we pass both F1

and F2, it implies A→CD.

Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4
5 1 4 4

We can check F1 on R1 and F2 on R2 only because
(F1  F2)+ = F+
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Dependency preserving

Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4

R

What about decompose R to R1(A,B), 
R2(A,C,D) ?  

R is decomposed to R1(A,B) , R2(A,C,D)  

R2=A, C, D(R)R1 = A, B(R)

A B
1 1
2 1
3 2
4 1

A C D
1 3 4
2 3 4
3 2 3
4 3 4

F+ = {A→ B, B→CD, A →CD, trivial FDs}

F1 = {A→ B, trivials}, the projection of F+ on R1

F2 = {A→ CD , trivials}, the projection of F+ on R2

This is NOT a dependency preserving 
decomposition as:

(F1  F2)+ ≠ F+

Let us illustrate the implication of NOT 
dependency preserving in the next slide.  39



Dependency preserving

40

Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4

R

What about decompose R to R1(A,B), 
R2(A,C,D) ?  

A B
5 1R1 R2

If we insert a new record                                 into R1 and R2:
A C D
5 4 4

We need to check if the new record will make the database  
violate any FDs in F+. Is such decomposition allow us to do the 
validation on R1 and R2 only (but no need to join R1 and R2)?

Think about it…
A B C D
5 1 4 4

R2=A, C, D(R)R1 = A, B(R)

A B
1 1
2 1
3 2
4 1

A C D
1 3 4
2 3 4
3 2 3
4 3 4

Is this a lossless join decomposition?
Yes! As A→R1 (i.e., A→AB) holds in F+.
That mean we can recover R by R1⋈ R2.

Is it dependency preserving?



Dependency preserving

R1 = A, B(R) R2=A, C, D(R)

A B
1 1
2 1
3 2
4 1
5 1

R

F+ = { A→ B, B→CD, A→CD }

Inserting tuple (5,1,4,4) violates B→CD. 

The decomposition is NOT dependency 
preserving as if we only check:

Inserting              violate any F1 in R1?A B
5 1

Inserting                    violate any F2 in R2?A C D
5 4 4

This involves checking F1={A→B}. 

This involves checking F2={A→CD}. 
Although we passed F1 and F2, 
it doesn’t mean that we 
passed all FDs in F! 
It is because we lost the FD 
B→CD in the decomposition.

Decompose 

A B C D
1 1 3 4
2 1 3 4
3 2 2 3
4 1 3 4
5 1 4 4

A C D
1 3 4
2 3 4
3 2 3
4 3 4
5 4 4

We CANNOT check F1 on R1 and F2 on R2 only because
(F1  F2)+  F+

Decomposition in this way requires joining tables to 
validate B→CD for EVERY INSERTION!
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Dependency preserving

42

A decomposition is dependency preserving if and 
only if

(F1  F2  …   Fn)+ = F+

Where Fi is the set of FDs in F+ that include only attributes in Ri.

Let F be a set of functional dependencies on R.

R1, R2, …, Rn be a decomposition of R.

Fi be the set of FDs in F+ that include only attributes in Ri.

What is the condition(s) for a decomposition 
to be dependency preserving?



Example 1

Given R(A, B, C) , F = {A → B , B → C}

Is R1(A, B), R2(B, C) a dependency preserving decomposition?

This decomposition is dependency preserving.

Note that A→C is in F+ because of 
the Transitivity axiom.

Then we check if (F1  F2)+ = F+ is true.

Since F1  F2 = F ,this implies (F1  F2)+ = F+.

First we need to find F+ , F1 and F2.

F+ = {A→B , B→C, A→C, some trivial FDs}

F1 = {A→B and trivial FDs }

F2 = {B→C and trivial FDs }
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Note that A→C is in F+ because of 
the Transitivity axiom.

Example 2

Given R(A, B, C) , F = {A → B , B → C}

Is R1(A, B), R2(A, C) a dependency preserving decomposition?

This decomposition is NOT dependency preserving.

Then we check if (F1  F2)+ = F+ is true.

Since B→C disappears in R1 and R2, (F1  F2)+  F+ .

First we need to find F+ , F1 and F2.

F+ = {A→B , B→C, A→C, some trivial FDs}

F1 = {A→B and trivial FDs }

F2 = {A→C and trivial FDs }
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Section 3

Boyce-Codd

Normal Form



FD and redundancy 

Consider the following relation:
Customer( id, name, dptID )

F = { {id} → {name, dptID}  }

id name dptID
1 Kit 1
2 David 1
3 Betty 2
4 Helen 2

Customer

{id} is a key in Customer.
Because the attribute closure of {id} (i.e., {id}+ = {id, name, 
dptID} ), which covers all attributes of Customer.

Observation: All non-trivial FDs in F form a 
key in the relation Customer.

This implies that there are no other FD that is just 
involve a subset of columns in the relation.

This implies that Customer has no redundancy.
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FD and redundancy 

{dptID} → {building} brings redundancy. Why? 

As another example:
Customer( id, name, dptID, building)

F = {  {id} → {name, dptID , building}
{dptID} → {building} }

id name dptID building

1 Kit 1 CYC
2 David 1 CYC
3 Betty 2 HW
4 Helen 2 HW

Customer

But those tuples can have different values in id and name.
For each different id values with the same dptID, building will 
be repeated (redundancy).

Tuples have the same dptID must have the same building 
(e.g., dptID=1, building=“CYC”).

47

For example, for tuples with (id=1, 
dptID=1) and (id=2, dptID=1) , building
must equal “CYC” (redundancy).



FD and redundancy 

How to check?

As another example:
Customer( id, name, dptID, building)

F = {  {id} → {name, dptID , building}
{dptID} → {building} }

id name dptID building

1 Kit 1 CYC
2 David 1 CYC
3 Betty 2 HW
4 Helen 2 HW

Customer

Check if the attribute set closure of {dptID} covers all 
attributes in Customer. ({dptID}+ = {dptID, building} ≠ Customer)

Redundancy is related to FDs. If there is an FD 
→ , where {}+ does not cover all attributes in 
R, then we will have redundancy in R!
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Boyce-Codd Normal Form

49

In other words, in BCNF, every 
non-trivial FD forms a key.

 is a key (superkey) for R

→  is trivial  (i.e.,   )

Summarizing the observations, a relation R has no 
redundancy, or in Boyce-Codd Normal Form (BCNF), 
if the following is satisfied: 

For all FDs in F+ of the form → , where    R and   R, 
at least one of the following holds:

i.e., The attribute set closure of 
,  represented as {}+ , covers 
all attributes in R.

We won’t border with trivial 
FDs such as A→A, AB→A …etc



How to test for BCNF?

Simplified test:

It suffices to check only the dependencies in the given F for 
violation of BCNF, rather than check all dependencies in F+

For example, given R(A,B,C); F = {A→B, B→C}, 
we only need to check if both {A}+ and {B}+ cover {A,B,C}.
We do not need to derive F+ = {A→B, B→C, A→C, …etc} and check 
each FD because A→C already considered when computing {A}+.

Formally, for verifying if R is in BCNF
For each non-trivial dependency →  in F+ (the 
functional dependency closure), check if + covers the 
whole relation (i.e., whether  is a superkey).

If any +  does not cover the whole relation, R is not in BCNF. 
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How to test for BCNF?

However, if we decompose R into R1 and R2, we cannot 
use only F to check if the “decomposed” relations (i.e., 
R1 and R2) is BCNF, we have to use F+ instead.

R(A, B, C, D), F = {A → B, B → C}

Illustration

To test if R is in BCNF, it suffices to check 
only the dependencies in F (but not F+)

{A}+ covers all {A,B,C,D}?

Since {A}+ = {A,B,C} ≠ {A,B,C,D}, 
R is not in BCNF.

A B C D

1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 1 5

An example R that satisfies F

As illustrated through this instance, since 
{A}+ = {A,B,C} ≠ {A,B,C,D}, this implies 
that it will cause redundancy when we 
have tuples with the same value across 
{ABC} but different values in D.

R
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How to test for BCNF?

A B C D

1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 1 5

R

A B

1 1

R1(A, B)

A C D

1 1 1
1 1 2
1 1 3
1 1 4
1 1 5

R2(A, C, D)

To illustrate why we cannot use only F to test 
decomposed relations for BCNF, let’s try to 
decompose R into R1(A, B) and R2(A, C, D)

R(A, B, C, D), F = {A → B, B → C}

Illustration

Is R2(A, C, D) in BCNF?

No! We need to use F+ to verify if R2 is BCNF

When we check R2, none of FDs in F is 
contained in R2. Does this mean no non-trivial 
FDs are in R2, and R2 is in BCNF?
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How to test for BCNF?

In R2(A, C, D), A→C is in F+, because:

A→C can be obtained by transitivity rule on A→B and B→C

There is a non trivial FD A→C in R2 that we have missed!

Therefore in R2 we check {A}+ = {A,C} ≠ {A,C,D} 

Thus, A is not a key in R2

R2 is NOT in BCNF.

Conclusion: When we test whether a 
decomposed relation is in BCNF, we must 
project F+ onto the relation (e.g., R2), not F!

A B C D

1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 1 5

R

A B

1 1

R1(A, B)

A C D

1 1 1
1 1 2
1 1 3
1 1 4
1 1 5

R2(A, C, D)
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Section 4

Normalization



Normalization goal

55

When we decompose a relation R with a set of 
functional dependencies F into R1, R2, …, Rn, we try 
to meet the following goals:

1. Lossless-join – Avoid the decomposition result in 
information loss.

3. Dependency preserving – Avoid the need to join the 
decomposed relations to check the functional dependencies.

2. No Redundancy – The decomposed relations Ri should be 
in Boyce-Codd Normal Form (BCNF). (There are also other 
normal forms.)



Illustration 

Consider R(A, B, C), F = {A→B , B→C}, is R in BCNF? 
If not, decompose R into relations that are in BCNF.

Because {B}+={B,C} ≠ {A,B,C}

Since {B}+ does not cover all attributes in R, R is NOT in BCNF.

Is R in BCNF?
A B C

1 1 2
2 1 2
3 1 2
4 1 2

R

How should we decompose R such that the decomposed 
relations are always lossless join?
Note: A decomposition is lossless join if at least one of the 
following dependencies is in F+

Schema of R1  schema of R2 → schema of R1

Schema of R1  schema of R2 → schema of R2

OR
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Illustration 

If we decompose the relation R in this way the 
following must be true:

Schema of R1  schema of R2 is A.

Idea: To make the decomposition always lossless join, we can 
pick the FD A→B and make the decomposed relation as:

R1(A,B) – the attributes in the L.H.S. and R.H.S. of the FD.

R2(A,C) – the attribute(s) in the L.H.S. of the FD, and 
the remaining attributes that does not appear in R1.

Schema of R1  schema of R2→ schema of R1

A→R1= A→AB must be true because R1 must consists of the 
L.H.S. and R.H.S. of the FD A→B in F.
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Illustration 

F1 = {A→B, trivial FDs}, it is a projection of F+ on R1.

Is R1(A, B) in BCNF?

Since {A}+ = {A,B} = R1, {A} is a key in R1.

Since all FDs in F1 forms a key, R1 is in BCNF. 

F2 = {A→C, trivial FDs}, it is a projection of F+ on R2.

Is R2(A, C) in BCNF?

Since {A}+ = {A,C} = R2, {A} is a key in R2.

Since all FDs in F2 forms a key, R2 is in BCNF. 

A B C

1 1 2
2 1 2
3 1 2
4 1 2

R

A C

1 2
2 2
3 2
4 2

R2

A B

1 1
2 1
3 1
4 1

R1

Therefore, decomposing R(A, B, C) with F = {A→B , B→C} to 
R1(A, B) and R2(A, C) result in a lossless join decomposition 
(no information lost), and BCNF relations (no redundancy)

R1(A, B) R2(A, C)

A → B A→CFx

F = {A→B , B→C} F+ = {A→B , B→C, A→C, trivial FDs}
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Illustration

Since B→ C disappears in R1 and R2, (F1  F2)+  F+ .

Is the decomposition dependency preserving ?

F = {A → B , B → C}

(F1  F2) = (A → B , A→C)

The decomposition is NOT dependency preserving.

Note: Although the decomposition is 
not dependency preserving, but it is 
lossless join, so we can join R1 and R2 to 
test B→C.
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BCNF decomposition algorithm

result = {R};
done = false;
compute F+;
while (done == false) {

if (there is a schema Ri in result and Ri is not in BCNF)
let →  be a non-trivial FD that holds on Ri s.t. {}+  Ri

result = (result – Ri)  ( )  (Ri – )
else

done = true;
}

 is not a key;
→  causes Ri

to violate BCNF

1. Delete Ri

Each Ri is in BCNF, and the 
decomposition must be lossless-join

2. Create a relation with only  and 

3. Create a relation containing 
Ri but with  removed.
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Example 1

Consider R(A, B, C), F = {A→B , B→C}, 
decompose R into relations that are in BCNF.

Alternative decomposition: To make the 
decomposition always lossless join, we can pick the FD 
B→C and make the decomposed relation as:

R1(B,C) – the attributes in the L.H.S. and R.H.S. of 
the FD.

R2(A,B) – the attribute(s) in the L.H.S. of the FD, and 
the remaining attributes that does not appear in R1.

A B C

1 1 2
2 1 2
3 1 2
4 1 2

R

R2R1

B C

1 2

A B

1 1
2 1
3 1
4 1

R1(B, C)

B → C 

R2(A, B)

A→BFx
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Example 1

Decomposition: R1(B, C),  R2(A, B)

Is R1(B, C) in BCNF?
F1 = {B→C, trivial FDs}, it is a projection of F+ on R1.

Since {B}+ = {B,C} = R1, {B} is a key in R1.

Since all FDs in F1 forms a key, R1 is in BCNF. 

Is R2(A, B) in BCNF?
F2 = {A→B, trivial FDs}, it is a projection of F+ on R2.

Since {A}+ = {A,B} = R2, {A} is a key in R2.

Since all FDs in F2 forms a key, R2 is in BCNF. 

F = {A→B , B→C} F+ = {A→B , B→C, A→C, trivial FDs}

R1(B, C) R2(A, B)

B → C A→BFx

A B C

1 1 2
2 1 2
3 1 2
4 1 2

R

R2R1

B C

1 2

A B

1 1
2 1
3 1
4 1
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Example 1

Is the decomposition dependency preserving ?

Since F = (F1  F2) , this implies (F1  F2)+ = F+ .

F = {A→B , B→C}

(F1  F2) = (B → C , A→B)

The decomposition is dependency preserving.

Is the decomposition lossless join?

From the illustration in example 1, the 
decomposition must be lossless join.

R1(B, C) R2(A, B)

B → C A→BFx

That means if we insert a new tuple, if the new tuple does 
not violate F1 in R1, and F2 in R2, it won’t violate F+ in R.
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A B C

1 1 2
2 1 2
3 1 2
4 1 2

R

R2R1

B C

1 2

A B

1 1
2 1
3 1
4 1



Example 2

Consider a relation R in a bank:
R (b_name, b_city, assets, c_name, l_num, amount)

F = { {b_name} → {assets, b_city},
{l_num} → {amount, b_name},
{l_num, c_name} → {all other attributes}}

With {b_name} → {assets, b_city}, {b_name}+ ≠ R,
R is not in BCNF.

Decomposition

Decompose R into R1(b_name, assets, b_city) and 
R2(b_name, c_name, l_num, amount).

Each specific value in  bname is 
corresponds to at most one {asset , 
b_city} value

Each l_num corresponds to at most 
one  {amount, b_name} value.

Each { l_num, c_name}  corresponds 
to at most one {b_name, b_city, 
assets, amount} value.
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Example 2

Is R1(b_name, assets, b_city) in BCNF?

Is R2(b_name, c_name, l_num, amount) in BCNF?

F1 = { {b_name} → {assets, b_city}, trivial FDs}

{b_name}+ = {b_name, assets, b_city} =  R1,
so {b_name} is a key in R1.

Since all FD in F1 forms a key in R1, R1 is in BCNF.

F2 = { {l_num} → {amount, b_name} , 
{l_num, c_name} → {all attributes} }

{l_num}+ = {l_num, amount, b_name} ≠  R2, 
so {l_num} is NOT a key in R2.

Since NOT all FD in F2 forms a key in R2, R2 is NOT in BCNF.

Projection of F+

on F1.

Projection of F+

on F2.
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Example 2

Is R3(l_num, amount, b_name) in BCNF? 

Picking {l_num} → {amount, b_name}, R2 is further 
decomposed into:

R3(l_num, amount, b_name)

R4(c_name, l_num)

F3 = {{l_num} → {amount, b_name}, trivial FDs}

{l_num}+ = {l_num, amount, b_name} =  R3, so {l_num} is a 
key in R3.

Since all FD in F3 forms a key in R3, R3 is in BCNF.

66



Example 2

Now, R1, R3 and R4 are in BCNF;

The decomposition is also lossless-join.

Is R4(c_name, l_num) in BCNF?

F4 = {trivial FDs}

Since all FD in F4 forms a key in R4, R4 is in BCNF.
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Example 2

The decomposition is also dependency preserving.

F1 = { {b_name} → {assets, b_city}, trivial FDs}

F3 = {{l_num} → {amount, b_name}, trivial FDs}

{l_num} → {b_name}    … (i)
by Decomposition of {l_num} → {amount, b_name}

{l_num} → {assets, b_city} … (ii) 
by Transitivity of  (i) and {b_name} → {assets, b_city}

{l_num} → {b_name ,assets, b_city, amount}  by Union of F3 and (ii)

{l_num, c_name} → {l_num ,c_name, b_name ,assets, b_city, amount}  by 
Augmentation 

Therefore F1  F3  F4 = F, which implies (F1  F3  F4)+ = F+ .

The decomposition is dependency preserving. 68



BCNF doesn’t imply dependency preserving

It is not always possible to get a BCNF 
decomposition that is dependency preserving.

Consider R(A, B, C); F = { AB→C, C→B }

There are two candidate keys:  
{AB}, and {AC}.

R is not in BCNF, since C is not a key.

Decomposition of R must fail to 
preserve AB→C.

{AB}+ = {A,B,C} = R

{AC}+ = {A,B,C} = R

A B C

1 1 2
2 1 2
1 2 3

R

A B

1 1
2 1
1 2

R1

B C

1 2
2 3

R2

R1 R2

A B

1 1
2 1
1 1

A C

1 2
2 2
1 3

R1 R2

A C

1 2
2 2
1 3

F1= {Ø}

F2= {C→B}

Not lossless 
decomposition

B C

1 2
2 3

lossless

Not lossless 
decomposition

Not dependency 
preserving69



Motivating example

Back to our motivating example, we have:

Employees( eid, name, parkingLot, did, since)

Departments( did, dname, budget)

Is Employees in BCNF?

{did}+ = {parkingLot} ≠ {eid, name, parkingLot, did, since}  

Since did is not a key, Employees is NOT in BCNF.

FD: did → parkingLot

“Employees who work in the same department must 
park at the same parkingLot.” implies the following FD:

70



Normalization

Employees( eid, name, parkingLot, did, since) is 
decomposed to

Employees2( eid, name, did, since)
Dept_Lots( did, parkingLot)

With Departments( did, dname, budget), the above 
two decomposed relations are further refined to

Employees2( eid, name, did, since)

Departments( did, dname, parkingLot, budget)

Good design: parking lots for all employees can be updated 
by changing their department-specific parkingLot. 71



Summary

Relational database design goals
Lossless-join

No redundancy (BCNF)

It is not always possible to satisfy the three goals. 

Dependency preservation

SQL does not provide a direct way of specifying FDs 
other than superkeys.

Can use assertions to check FD, but it is quite expensive.

A lossless join, dependency preserving decomposition into 
BCNF may not always be possible.
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Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join decomposition.
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Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join decomposition.
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Question: How to test if {A,C} is 
a candidate key of R or not?



Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join decomposition.
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Answer:
1) [Superkey] A candidate key is a superkey. If {A,C} is a 
superkey, its attribute closure {A,C}+ must contains all 
attributes in R!
2) [Minimal] If {A,C} is minimal, it is a candidate key!

Question: How to test if {A,C} is 
a candidate key of R or not?

1) Find attribute closure of A: {A}+ = {A,B}. It is not a superkey.

2) Find attribute closure of C: {C}+ = {C}. It is not a superkey.

3) Find attribute closure of {A,C}: {A,C}+ = {A,B,C}. Since it contains all attributes of R, it is a superkey.

Is {A,C} a superkey?

4) Since none of subset of {A,C} is a key, {A,C} is minimal, it is a candidate key.

Is {A,C} minimal?



Question 1
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Answer: A decomposition is lossless-join decomposition if 
the original relation can be obtained after joining the 
decomposed relations.

Question: How to test if a 
decomposition is lossless-join 
decomposition?

Question: What do we mean by 
lossless-join decomposition?

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2

1) Common attribute of R1 and R2:

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join 
decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join 
decomposition.



Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join 
decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join 
decomposition.
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Answer: A decomposition is lossless-join decomposition if 
the original relation can be obtained after joining the 
decomposed relations.

Question: How to test if a 
decomposition is lossless-join 
decomposition?

Question: What do we mean by 
lossless-join decomposition?

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2

2) A→AB in F+?

Since A→B , A→AB is true (Augmentation), A→AB  in F+!

3) Therefore, the decomposition is a lossless-join decomposition.

1) Common attribute of R1 and R2: A



Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on 
R, which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join 
decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join 
decomposition.
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Question: How to test if a 
decomposition is lossless-join 
decomposition?

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2
1) Common attribute of R1 and R2:



Question 1

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, 
which of the following statements is/are correct?

a. {A,C} is a candidate key for R.

b. The decomposition of R into R1(A,B) and R2(A,C) is a lossless-join 
decomposition.

c. The decomposition of R into R1(A,B) and R2(B,C) is a lossless-join 
decomposition.
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Question: How to test if a 
decomposition is lossless-join 
decomposition?

2) B→AB in F+?

3) B→BC in F+?

4) Therefore, the decomposition is NOT a lossless-join decomposition.

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2
1) Common attribute of R1 and R2: B



Question 2 a

i) Which of the following attributes is NOT in the attribute closure 
of C (i.e., C+)?

A. A.

B. B.

C. D.

D. E.

E. None of the above.
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: What do we mean by 
the attribute closure of C?

Answer: The attribute closure of C is 
the set of attributes that can be 
functionally determined by C.



i) Which of the following attributes is NOT in the attribute closure 
of C (i.e., C+)?

A. A.

B. B.

C. D.

D. E.

E. None of the above.

Question 2 a
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The attribute closure of C is 
the set of attributes that can be 
functionally determined by C.

Question: What do we mean by 
the attribute closure of C?

Question: C→A holds? 1. Since C→AB, 
2. C→A and C→B (decomposition)



i) Which of the following attributes is NOT in the attribute closure 
of C (i.e., C+)?

A. A.

B. B.

C. D.

D. E.

E. None of the above.

Question 2 a
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The attribute closure of C is 
the set of attributes that can be 
functionally determined by C.

Question: What do we mean by 
the attribute closure of C?

Question: C→B holds? 1. Since C→AB, 
2. C→A and C→B (decomposition)



i) Which of the following attributes is NOT in the attribute closure 
of C (i.e., C+)?

A. A.

B. B.

C. D.

D. E.

E. None of the above.

Question 2 a
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The attribute closure of C is 
the set of attributes that can be 
functionally determined by C.

Question: What do we mean by 
the attribute closure of C?

Question: C→D holds? Think in this way :
1. Since we have BCE→D , can we have C→ BCE?
2. We have C→B, therefore C→BC (augmentation),    can we 

show that C→E?
3. Since C→A and A→E, C→E (transitivity)
4. Since C→BC and C→E, C→BCE (union)
5. Since C→BCE  and BCE→D , C →D (transitivity)



i. Which of the following attributes is NOT in the attribute closure 
of C (i.e., C+)?

A. A.

B. B.

C. D.

D. E.

E. None of the above.

Question 2 a
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The attribute closure of C is 
the set of attributes that can be 
functionally determined by C.

Question: What do we mean by 
the attribute closure of C?

Think in this way :
1. Since we have BCE→D , can we have C→ BCE?
2. We have C→B, therefore C→BC (augmentation),    

can we show that C→E?
3. Since C→A and A→E, C→E (transitivity)
4. Since C→BC and C→E, C→BCE (union)
5. Since C→BCE  and BCE→D , C →D (transitivity)

Question: C→E holds?



Question 2 a

• Since C→AB, 

• C→A and C→B (decomposition)

• Since C→A and A→E,

• C→E (transitivity)

• Since C→B and C→E,

• C→BE (union)

• Since C→BE,

• C→BCE (augmentation)

• Since BCE→D and C→BCE,

• C→D (transitivity)

• Hence, C+ = {A,B,C,D,E}

• Answer: E
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Question 2 b

• Which of the following functional dependencies is NOT in the closure of F 
(i.e., F+)?

i. BE→D

ii. BD→ABCDE

iii. AB→D

iv. CE→A
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The set of all functional 
dependencies that can be logically 
implied by F is called the closure of 
F (or F+).

Question: What do we mean by 
the FD closure?



• Which of the following functional dependencies is NOT in the closure of F 
(i.e., F+)?

i. BE→D

ii. BD→ABCDE

iii. AB→D

iv. CE→A

Question 2 b
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The set of all functional 
dependencies that can be logically 
implied by F is called the closure of 
F (or F+).

Question: What do we mean by 
the FD closure?



• Which of the following functional dependencies is NOT in the closure of F 
(i.e., F+)?

i. BE→D

ii. BD→ABCDE

iii. AB→D

iv. CE→A

Question 2 b
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The set of all functional 
dependencies that can be logically 
implied by F is called the closure of 
F (or F+).

Question: What do we mean by 
the FD closure?

Think in this way :
1. Start from BD→AC , can we make R.H.S. more close to ABCDE?
2. BD→ABCD (augmentation), can we show that ABCD →ABCDE?
3. Since A→E, we have ABCD→ABCDE (augmentation)
4. Therefore, we can show that BD→ABCDE is true!



• Which of the following functional dependencies is NOT in the closure of F 
(i.e., F+)?

i. BE→D

ii. BD→ABCDE

iii. AB→D

iv. CE→A

Question 2 b
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The set of all functional 
dependencies that can be logically 
implied by F is called the closure of 
F (or F+).

Question: What do we mean by 
the FD closure?



• Which of the following functional dependencies is NOT in the closure of F 
(i.e., F+)?

i. BE→D

ii. BD→ABCDE

iii. AB→D

iv. CE→A

Question 2 b
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: The set of all functional 
dependencies that can be logically 
implied by F is called the closure of 
F (or F+).

Question: What do we mean by 
the FD closure?

Think in this way :
1. We have C→AB, and therefore we have C→A (decomposition); can we show that 

CE→C ?
2. CE→C is always true due to reflexivity!
3. Therefore, we have CE→C and C→A, we can show that CE→A is true (transitivity)!



Question 2 c

• Which of the following is/are candidate key(s) of R?

i. {B,E}

ii. {B,D}

iii. {C,E}
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: How to show if a set 
of attribute is a candidate key
or not?



• Which of the following is/are candidate key(s) of R?

i. {B,E}

ii. {B,D}

iii. {C,E}

Question: Does {B,E}+ covers all attributes in R? i.e. BE→ABCDE?

Question 2 c
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Answer: 1) It has to be a super key. 
2) It has to be minimal.

Question: How to show if a set 
of attribute is a candidate key
or not?



• Which of the following is/are candidate key(s) of R?

i. {B,E}

ii. {B,D}

iii. {C,E}

Question: Does {B,D}+ covers all attributes in R? i.e. BD→ABCDE?

Question 2 c
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Think in this way :
1. BD→BD must be true, therefore, we have to show 

1) BD→A,  2) BD→C, and 3) BD→E.
2. Since BD→AC, BD→A and BD→C are true (decomposition) 
3. How about BD→E? We have A→E, can we show that BD→A? 
4. BD→A already shown to be true, so now we have BD→A and A→E, therefore 

BD→E is true!

Answer: 1) It has to be a super key. 
2) It has to be minimal.

Question: How to show if a set 
of attribute is a candidate key
or not?



• Which of the following is/are candidate key(s) of R?

i. {B,E}

ii. {B,D}

iii. {C,E}

Question 2 c
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

1. Since we have already shown in part a) that {C}+covers all attributes of R, 
therefore C is a candidate key of R. 

2. Hence, {C,E} must NOT be a candidate key of R because {C,E} is not minimal.

Answer: 1) It has to be a super key. 
2) It has to be minimal.

Question: How to show if a set 
of attribute is a candidate key
or not?



Question 2 d

• Suppose that relation R is decomposed into R1(A,B,C,D) and 
R2(A,C,E).  Which of the following statements is/are correct?

i. This is a lossless-join decomposition.

ii. The decomposition is dependency preserving.

iii. R1 and R2 are in BCNF.
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  



• Suppose that relation R is decomposed into R1(A,B,C,D) and 
R2(A,C,E).  Which of the following statements is/are correct?

i. This is a lossless-join decomposition.

ii. The decomposition is dependency preserving.

iii. R1 and R2 are in BCNF.

Question 2 d
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: How to test if a 
decomposition is lossless-join 
decomposition?

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2

1. Common attribute of R1 and R2 is {A,C}.
2. Test if any of the following FD are in F+ :

1. AC→ABCD 
2. AC→ACE

3. Since A→E , AC→ACE is true (augmentation).
4. Therefore, this is a lossless-join decomposition.



• Suppose that relation R is decomposed into R1(A,B,C,D) and 
R2(A,C,E).  Which of the following statements is/are correct?

i. This is a lossless-join decomposition.

ii. The decomposition is dependency preserving.

iii. R1 and R2 are in BCNF.

Question 2 d

97

Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: How to test if a 
decomposition is dependency 
preserving or not?

Answer: A decomposition is dependency preserving iff:

(F1 U F2 U …. U Fn)+ = F+

Where Fi is the set of FDs in F+ that include only attributes in 
Ri.

1. Determine F1 and F2, the projection of F+ on R1 and R2

1. F1 = {CD→B , C→ABD , BD→AC }.
2. F2 = { A→E , C→AE }.

2. Although {BCE→D, CD→BE} are missing, but we know that {C}+= R, so we have C→ABD in F1 and 
C→AE in F2

▪ BCE→D and CD→BE both have C on L.H.S., so these two FDs are in (F1 U F2)+

3. Therefore (F1 U F2)+ = F+.
4. Therefore, this decomposition is dependency preserving.



• Suppose that relation R is decomposed into R1(A,B,C,D) and 
R2(A,C,E).  Which of the following statements is/are correct?

i. This is a lossless-join decomposition.

ii. The decomposition is dependency preserving.

iii. R1 and R2 are in BCNF.

Question 2 d

98

Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: How to test if the 
decomposed relations are in BCNF? Answer: In BCNF, every non-trivial 

FD forms a key!Test if R1 is in BCNF:
1. Determine F1 , the projection of F+ on R1.

1. F1 = {CD→B , C→AB , BD→AC , C→D}.
2. Determine if all FDs in F1 forms a key of R1.

1. Is {CD} a key in R1? Yes! Because {CD}+={ABCD} in R1, contains all attributes in R1.

2. Is {C} a key in R1? Yes! Because {C}+={ABCD} in R1, contains all attributes in R1.

3. Is {BD} a key in R1? Yes! Because {BD}+={ABCD}, contains all attributes in R1.

3. Since all non-trivial FDs in F1 forms a key, R1 is in BCNF.



• Suppose that relation R is decomposed into R1(A,B,C,D) and 
R2(A,C,E).  Which of the following statements is/are correct?

i. This is a lossless-join decomposition.

ii. The decomposition is dependency preserving.

iii. R1 and R2 are in BCNF.

Question 2 d
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Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 
{A→E, BCE→D, CD→BE, C→AB, BD→AC} which hold in it.  

Question: How to test if the 
decomposed relations are in BCNF? Answer: In BCNF, every non-trivial 

FD forms a key!Test if R2 is in BCNF:
1. Determine F2 , the projection of F+ on R2.

1. F2 = {A→E , C→A}.
2. Determine if all FDs in F2 forms a key of R2.

1. Is {A} a key in R2? No! Because {A}+={AE}, not covering all attributes in R2.

3. Since not all non-trivial FDs in F2 forms a key, R2 is NOT in BCNF.



Question 3

Consider the schema R(A, B, C, D, E) and the set of functional dependencies 
F={ D→A, C→BDE } which holds in the schema.

100

a) Find all candidate keys of R. Show your steps.

b) Give a lossless join decomposition of R into relations in BCNF.  Is the 
decomposition dependency preserving?



Question 3

Consider the schema R(A, B, C, D, E) and the set of functional dependencies 
F={ D→A, C→BDE } which holds in the schema.
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a) Find all candidate keys of R. Show your steps.

◼ Is C a candidate key?
◼ Since C+ is {A, B, C, D, E}, C is a superkey, and since C is minimal, it is a 

candidate key.
◼ Since C is a candidate key, any supersets of C are not candidate keys.

◼ How about the combinations of other attributes?
◼ C does not appear on the RHS of any non-trivial FD, therefore the 

value of C cannot be functionally determined by other attribute(s). 
◼ All combinations of other attributes (i.e. A,B,D, and E) cannot form a 

key. (Their attribute closure must not contain C)

◼ Thus, R has only one candidate key, which is C.



Consider the schema R(A, B, C, D, E) and the set of functional dependencies 
F={ D→A, C→BDE } which holds in the schema.

Step 1. Decompose R into two relations R1

and R2, and make R1 a BCNF.
Look at D→A in F, make R1 as (A,D).
Then R2 is (B,C,D,E).
Why include D in R2?  

Step 2. Check if R1 and R2 are in BCNF. 
If not, further decompose it using 
Step 1.
In BCNF, every non-trivial FD forms a 
key!

Question 3
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b) Give a lossless join decomposition of R into relations in BCNF.  Is the 
decomposition dependency preserving?

◼ R1 (A,D), R2 (B,C,D,E)

◼ R1 in BCNF ?
❑ F1 is the projection of F+ on R1: F1 = {D→A, and the trivial FDs}
❑ Is D a key in R1?
❑ Since D is a key in R1, all non-trivial FDs in F1 forms a key, thus R1 is in BCNF.

◼ R2 in BCNF?
❑ F2 is the projection of F+ on R2: F2 = {C→BDE, and the trivial FDs}
❑ Is C a key in R2?
❑ Since C is a key in R2, all non-trivial FDs in F2 forms a key, thus R2 is in BCNF.



Question 3

Consider the schema R(A, B, C, D, E) and the set of functional dependencies 
F={ D→A, C→BDE } which holds in the schema.

103

b) Give a lossless join decomposition of R into relations in BCNF.  Is the 
decomposition dependency preserving?

◼ R1 (A,D), R2 (B,C,D,E)

◼ R1 in BCNF ?
❑ F1 is the projection of F+ on R1: F1 = {D→A, and the trivial FDs}
❑ Is D a key in R1?
❑ Since D is a key in R1, all non-trivial FDs in F1 forms a key, thus R1 is in BCNF.

◼ R2 in BCNF?
❑ F2 is the projection of F+ on R2: F2 = {C→BDE, and the trivial FDs}
❑ Is C a key in R2?
❑ Since C is a key in R2, all non-trivial FDs in F2 forms a key, thus R2 is in BCNF.

◼ Is it a lossless-join decomposition?

❑ Common attribute among R1 and R2 = D

❑ D→R1 (i.e. AD) holds in F+

❑ Therefore it is a lossless-join decomposition.

Answer: A decomposition is lossless-join decomposition iff
at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2



Question 3

Consider the schema R(A, B, C, D, E) and the set of functional dependencies 
F={ D→A, C→BDE } which holds in the schema.
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b) Give a lossless join decomposition of R into relations in BCNF.  Is the 
decomposition dependency preserving?

Answer: A decomposition is dependency preserving iff:

(F1 U F2 U …. U Fn)+ = F+

Where Fi is the set of FDs in F+ that include only attributes in 
Ri.

◼ R1 (A,D), R2 (B,C,D,E)

◼ R1 in BCNF ?
❑ F1 is the projection of F+ on R1: F1 = {D→A, and the trivial FDs}
❑ Is D a key in R1?
❑ Since D is a key in R1, all non-trivial FDs in F1 forms a key, thus R1 is in BCNF.

◼ R2 in BCNF?
❑ F2 is the projection of F+ on R2: F2 = {C→BDE, and the trivial FDs}
❑ Is C a key in R2?
❑ Since C is a key in R2, all non-trivial FDs in F2 forms a key, thus R2 is in BCNF.

◼ Is it a lossless-join decomposition?

❑ Common attribute among R1 and R2 = D

❑ D→R1 (i.e. AD) holds in F+

❑ Therefore it is a lossless-join decomposition.

◼ Is it a dependency preserving decomposition?

❑ Since ( F1 U F2 )+ = F+, it is a dependency preserving decomposition.



Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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a) Find A+ and C+.

b) Find a candidate key of R.

c) Is B→D in F+ ?

d) Is D→BC in F+ ?

e) Is AC→D in F+ ?

f)  R is decomposed into R1(A, B, C) and R2(B, C, D).  Is the 
decomposition lossless? Is the dependency preserving?

g) Is R in BCNF?  If not, decompose R into relations in BCNF.



Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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a) Find A+ and C+.
– A+ = {AB} 

– C+ = {C}

b) Find a candidate key of R.
– AC or BC or CD



Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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c) Is B→D in F+ ?
– No.  Because B+ = {B}

d) Is D→BC in F+ ?
– No.  Because D + ={ABD}

e) Is AC→D in F+ ?
– Yes.  Because A→B and BC→D, we know that AC→D (pseudo-

transitivity)



• Lossless?
– R1∩R2=(B,C)

– (B,C)→R2

– Hence, it is a lossless decomposition.

Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}

108
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f)  R is decomposed into R1(A, B, C) and R2(B, C, D).  Is the 
decomposition lossless? Is the dependency preserving?

Question: How to test if a 
decomposition is lossless-join 
decomposition?

Answer: A decomposition is lossless-join decomposition 
iff at least one of the following dependencies is in F+:
1) common attribute of R1 and R2 → schema of R1

2) common attribute of R1 and R2 → schema of R2



Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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f)  R is decomposed into R1(A, B, C) and R2(B, C, D).  Is the 
decomposition lossless? Is the dependency preserving?

Question: How to test if a 
decomposition is dependency 
preserving or not?

Answer: A decomposition is dependency preserving iff:

(F1 U F2 U …. U Fn)+ = F+

Where Fi is the set of FDs in F+ that include only attributes 
in Ri.

• Lossless?
– R1∩R2=(B,C)

– (B,C)→R2

– Hence, it is a lossless decomposition.

• Dependency preserving?
– F1 = {A→B} ; F2={BC→D, D→ B}

– Since ( F1U F2)+ does not equal to F+ (D→A is not preserved), 
the decomposition is not dependency preserving 



Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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g) Is R in BCNF?  If not, decompose R into relations in BCNF.

• Is R in BCNF?  
– No.  A→B and D→A violate BCNF as neither A nor D is a super 

key in R.

Question: How to test if the 
decomposed relations are in 
BCNF?

Answer: In BCNF, every non-trivial 
FD forms a key!



g) Is R in BCNF?  If not, decompose R into relations in BCNF.

Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}

111

111

Step 1. Decompose R into two relations R1 and 
R2, and make R1 a BCNF.
Look at A→B in F, make R1 as (A,B).
Then R2 is (A,C,D).  

Step 2. Check if R1 and R2 are in BCNF. If not, 
further decompose it using Step 1.
In BCNF, every non-trivial FD forms a key!

• If not, decompose R into relations in BCNF.
– Decompose R into R1(A, B) and R2(A, C, D)

– R1 is in BCNF? 
• F1 = {A →B}, A is a key in R1, R1 is in BCNF!

– R2 is in BCNF?
• F2 = {D→A}, D is not a key in R2, R2 is not in BCNF!



g) Is R in BCNF?  If not, decompose R into relations in BCNF.

Question 4
Given R=(A, B, C, D), F={A→B, BC→D, D→A}
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• If not, decompose R into relations in BCNF.
– Decompose R into R1(A, B) and R2(A, C, D)

– R1 is in BCNF? 
• F1 = {A →B}, A is a key in R1, R1 is in BCNF!

– R2 is in BCNF?
• F2 = {D→A}, D is not a key in R2, R2 is not in BCNF!

– We further decompose R2 into R3(A, D) and R4(C, D).

– R3 is in BCNF?
• F3 = {D→A}, D is a key in R3, R3 is in BCNF!

– R4 is in BCNF?
• F4 = {empty}, R4 is in BCNF!

– Hence, we can decompose R into R1, R3 and R4 in BCNF.


