Lecture 9

Database Normalization

COMP3278A

Introduction to Database Management Systems

Dr. Ping Luo

Email: pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

Acknowledgement: Dr Chui Chun Kit

Outcome based learning

- Outcome 1. Information Modeling
 - Able to understand the modeling of real life information in a database system.
- Outcome 2. **Query Languages**
 - Able to understand and use the languages designed for data access.
- Outcome 3. System Design
 - Able to understand the design of an efficient and reliable database system.
- Outcome 4. Application Development
 - Able to implement a practical application on a real database.

Recap Armstrong's Axioms

- We have 3 basic axioms.
 - **1.** Reflexivity if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$.
 - **2. Transitivity** if $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$.
 - **3.** Augmentation if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$.

Recap Armstrong's Axioms

- 3 more axioms to help easier prove!
 - **4.** Union if $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$.
 - **Solution** if $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$.
 - **a** 6. Pseudo-transitivity if $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$, then $\alpha\gamma \rightarrow \delta$.
- 2 rules in tutorial!
 - **7.** Extensivity if $\alpha \rightarrow \beta$, then $\alpha \rightarrow \alpha\beta$.
 - **8.** Composition if $\alpha \rightarrow \beta$ and $\gamma \rightarrow \delta$, then $\alpha \gamma \rightarrow \beta \delta$.

Attribute set closure at

- \bigcirc Given a set F of FDs and a set of attributes α .
- The closure of α (denoted as α⁺) is the set of attributes that can be functionally determined by α.

Attribute set closure of A.
$$F = \{A \rightarrow B, B \rightarrow C\}$$
$$\{A\}^+ = \{A, B, C\}$$

- **1.** $A \rightarrow A$ is always true (by **Reflexivity**).
- **2.** $A \rightarrow B$ is given in F.
- 3. $A \rightarrow C$ is derived from F: Given $A \rightarrow B$ and $B \rightarrow C$, $A \rightarrow C$ is also true (by Transitivity).

Attribute set closure at

- \bigcirc Given a set F of FDs and a set of attributes α .
- The closure of α (denoted as α^+) is the set of attributes that can be functionally determined by α.

Attribute set closure of A.

$$F = \{A \rightarrow B, B \rightarrow C\}$$

$$\{A\}^{+} = \{A, B, C\}$$

$$\{B\}^{+} = \{B, C\}$$

$$\{C\}^{+} = \{C\}$$

$$\{A, B\}^{+} = \{A, B, C\}^{*}$$

Note that we only consider **single attribute**, not attribute sets (so we do not have AB, ABC, AC...etc in {A.B}+).

- The set of ALL functional dependencies that can be logically implied by F is called the closure of F (or F+)
- To compute F⁺ in a relation R:

This is the attribute set closure.

- **Step 1.** Treat every subset of **R** as α ,
- **Step 2.** For every α , compute α^+ .
- **Step 3.** Use α as LHS, and generate an FD for every subset of α^+ on RHS.

Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ .

N	S	Р	NS	NP	SP	NSP

Step 1. Treat every subset of **R** as α .

Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ .

	N	S	Р	NS	NP	SP	NSP
Attribute set closure	{N,S,P}						

Step 2. For every α , compute α^+ .

To find the attribute set closure {N}, use the attribute_closure() algorithm

- 1. $result = {N}$
- 2. Consider the FDs with $\mathbb{N} \rightarrow \mathbb{S}$, $\mathbb{N} \rightarrow \mathbb{P}$, add S and P into *result*.
- 3. $result = \{N,S,P\}$

Given a relation R(N, S, P) and the functional dependencies F = {N→S, N→P} find the FD closure F⁺.

	N	S	Р	NS	NP	SP	NSP
Attribute set closure	{N,S,P}	{S}	{P}	{N,S,P}	{N,S,P}	{S,P}	{N,S,P}

Step 2. For every α , compute α^+ .

To find the attribute set closure {N}, use the attribute_closure() algorithm

- 1. $result = {N}$
- 2. Consider the FDs with $\mathbb{N} \rightarrow \mathbb{S}$, $\mathbb{N} \rightarrow \mathbb{P}$, add S and P into *result*.
- 3. $result = \{N,S,P\}$

Given a relation R(N, S, P) and the functional dependencies F = {N→S, N→P} find the FD closure F⁺.

	N	S	Р	NS	NP	SP	NSP
Attribute set closure	{N,S,P}	{S}	{P}	{N,S,P}	{N,S,P}	{S,P}	{N,S,P}
	N→N						
	N→S						
	NAD			ı	I	·	l

 $\begin{array}{ccc}
 & N \rightarrow P \\
 & N \rightarrow NS \\
 & N \rightarrow NP \\
 & N \rightarrow SP \\
 & N \rightarrow NSP \\
\end{array}$

Step 3. Use α as LHS, and generate an FD for every subset of α^+ on RHS.

Given a relation R(N, S, P) and the functional dependencies $F = \{N \rightarrow S, N \rightarrow P\}$ find the FD closure F^+ .

	N	S	Р	NS	NP	SP	NSP
Attribute set closure	{N,S,P}	{S}	{P}	{N,S,P}	{N,S,P}	{S,P}	{N,S,P}
FD	$N \rightarrow N$ $N \rightarrow S$ $N \rightarrow P$ $N \rightarrow NS$ $N \rightarrow NP$ $N \rightarrow SP$ $N \rightarrow NSP$	s→s	P→P	NS→N NS→S NS→P NS→NS NS→NP NS→SP NS→NSP	$NP \rightarrow N$ $NP \rightarrow S$ $NP \rightarrow NS$ $NP \rightarrow NP$ $NP \rightarrow SP$ $NP \rightarrow NSP$	SP→S SP→P SP→SP	NSP→N NSP→S NSP→P NSP→NS NSP→NP NSP→SP NSP→NSP

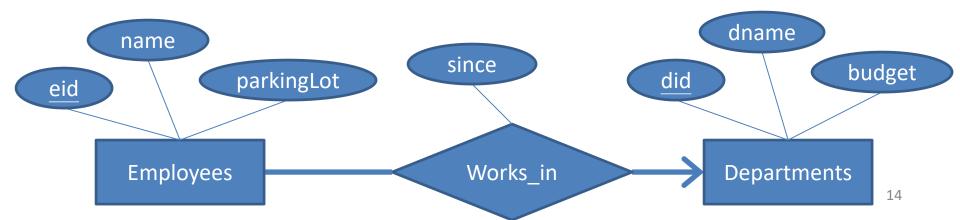
Concept

- Decomposition
 - Lossless-join decomposition
 - Dependency preserving decomposition
- Normal form

Boyce-Codd Normal Form (BCNF)

Motivating example

- Let's consider the following schema
 - Employees have eid (key), name, parkingLot.
 - Departments have did (key), dname, budget.
 - An employee works in exactly one department, since some date.
 - Employees who work in the same department must park at the same parkingLot.



Motivating example

- Reduce to relational tables
 - Employees (<u>eid</u>, name, parkingLot, did, since)
 Foreign key: did references Departments(did)
 - Departments(did, dname, budget)

Observation: In **Employees** table, whenever *did* is **1**, **parkingLot** must be "A"! **Implication:** The constraint "*Employees who work in the same department must park at the same parkingLot" is NOT utilized in the design!!! There are some redundancy in the Employees table.*

eid	name	parkingLot	did	since
1	Kit	А	1	1/9/2014
2	Ben	В	2	2/4/2010
3	Ernest	В	2	30/5/2011
4	Betty	Α	1	22/3/2013
5	David	Α	1	4/11/2004
6	Joe	В	2	12/3/2008
7	Mary	В	2	14/7/2009
8	Wandy	Α	1	9/8/2008

did	dname	budget
1	Human Resource	4M
2	Accounting	3.5M

Yes! As parkingLot is

"functionally depend" on did, we should not put parkingLot in the Employee table.

We are going to learn

- **Database normalization**
 - The process of organizing the columns and tables of a relational database to minimize redundancy and dependency.
- To make sure that every relation R is in a "good" form.
 - If R is not "good", decompose it into a set of relations $\{R_1,$ $R_2, ..., R_n$.

the decomposition? Are there any guidelines / theories developed to decompose a relation?

Question: How can we do

Yes! The theories can be explained through functional dependencies ©.

Normalization goal

- We would like to meet the following goals when we decompose a relation schema R with a set of functional dependencies F into $R_1, R_2, ..., R_n$
 - 1. Lossless-join Avoid the decomposition result in information loss.
 - **2. Reduce redundancy** The decomposed relations R_i should be in **Boyce-Codd Normal Form (BCNF)**.

3. Dependency preserving – Avoid the need to join the decomposed relations to check the functional dependencies when new tuples are inserted into the database.

Section 1

Lossless-join Decomposition

R

Α	В	С
1	1	3
1	2	2
2	1	3
2 3 3	2	2
3	1	3
4	2	2

Functional dependencies

$$F = \{B \rightarrow C\}$$

Decompose

$$R_1 = \pi_{A, B}(R)$$

A	В	А	С
1	1	1	3
1	2	1	2
2	1	2	3
3	2	3	2
3	1	3	3
4	2	4	2
4	1	4	3

 $R_2 = \pi_{A, C}(R)$

The functional dependency $\mathbf{B} \rightarrow \mathbf{C}$ tells us
that for all tuples with the same value in B ,
there should be at most one corresponding
value in C (E.g., If B=1, C =3; if B=2, C=2)
Question: Will decomposing R(A,B,C) into
$R_1(A,B)$ and $R_2(A,C)$ cause information lost?

Think in this way:

Is this decomposition "lossless join decomposition"?

I.e., Is there any information lost if we decompose **R** in this way?

R

Functional dependencies	R_1	\bowtie	$R_2 = \pi_A$	_{, B} (R) ⋈	$\pi_{A, C}(R)$
-------------------------	-------	-----------	---------------	----------------------	-----------------

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

 $F = \{B \rightarrow C\}$

Decompose

$$R_1 = \pi_{A, B}(R)$$

Α	В
1	1
1	2
2	1
2 3 3	2
3	1
4	2
4	1

Α	С
1	3
1	3 2
2	3
2 3 3	2
3	3
4 4	
4	2

A	В	С
1	1	3
1	1	2
1	2	3
1	2	2
2	1	3
1 1 1 1 2 3	1 1 2 2 1 2	3 2 3 2 3 2
3 3 4 4 4 4	2 1 1 2 2 1	3
3	1	2
3	1	3
4	2	2
4	2	3 2 3 2 3 2 3
4	1	2
4	1	3

To check if the decomposition will cause information lost, let's try to join $\mathbf{R_1}$ and $\mathbf{R_2}$ and see if we can recover \mathbf{R} .

As we see that $R_1 \bowtie R_2 \neq R$, the decomposition has information lost.

This is <u>NOT a lossless-join</u> decomposition.

This is a bad decomposition

R

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4 4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

$R_1 \bowtie$	$R_2 = \pi_{A_1}$	$_{B}(R)\bowtie$	$\pi_{B,C}(R)$
---------------	-------------------	------------------	----------------

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
3 4 4	2	2
4	1	3

How about decomposing the relation R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$?

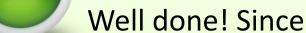
Decompose

$$R_1 = \pi_{A, B}(R)$$

В
1
2
1
2
1
2
1

$$R_2 = \pi_{B, C}(R)$$

В	С
1	3
2	2



 $R_1 \bowtie R_2 = R$, breaking down R to R_1 and R_2 in this way has no information lost. This decomposition is a

lossless-join decomposition.

R

А	В	С
1	1	3
1	2	3 2 3
2	1	3
3	2	2
3 4	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

What is/are the condition(s) for a decomposition to be lossless-join?

Example I

NOT Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$

$$R_2 = \pi_{A, C}(R)$$

A	С
1	3
1	2
2	3
3	2
3	3
4	2

Example II

Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

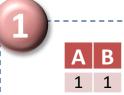
Α	В
1	1
1	2
2	1
3	2
3	1

u
П.
П

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4 4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$



Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

Example I

NOT Lossless-join decomposition

$R_1 = \pi_{A, B}(R) \qquad R$	$L_2 = \pi_{A, C}(R)$
--------------------------------	-----------------------

	Α	В	
L	1	1	
	1	2	
	2	1	
	3	2	
	3	1	
	4	2	
	1	1	

A	С
1	3
1	2
2	3
3	2
3	3
4	2
4	3

R

Α	В	С
1	1	3
1	2	3
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

A	В
1	1

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

Α	С
1	3
1	2

Since $A \rightarrow AC$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_2 (e.g., (1,3), (1,2)).

Example I

NOT Lossless-join decomposition

$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_{A, C}(R$
-----------------------	----------------------

1	Д	В	
	1	1	
	1	2	
	2	1	
	3	2	
	3	1	
	4	2	

	,
Α	C
1	3
1	2
2	3
3	2
3	3
4	2
4	3

R

А	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Example I

NOT Lossless-join decomposition

Functional dependencies

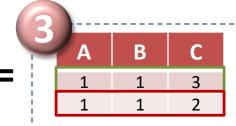
$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with A=1, B=1.

Α	C
1	3
1	2

Since $A \rightarrow AC$ is **NOT** a functional dependency in F+, there can be more than one tuples with A=1 in R_2 (e.g., (1,3), (1,2)).



Therefore when we join R₁ and R₂, more than one tuples will be generated (i.e., (1,1) in R_1 combine with (1,3) and (1,2) in R₂)

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

	,		,
Α	В	Α	С
1	1	1	3
1	2	1	2
2	1	2	3
3	2	3	2
3	1	3	3
4	2	4	2
4	1	4	3

Observation:

The decomposition of R(A,B,C) into $R_1(A,B)$ and $R_2(A,C)$ is NOT lossless-join because

 \rightarrow AC

is **NOT** in F⁺, and ... (to be explained in the next slide)

×

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

Example I

NOT Lossless-join decomposition

$R_1 = \pi_{A, B}(R) \qquad R_2$	$=\pi_{A,C}(R)$
----------------------------------	-----------------

A	В
1	1
1	2
2	1
3	2
3	1
	_

A	C
1	3
1	2
2	3
3	2
3	3
4	2
4	3

R

А	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Example I NOT Lossless-join decomposition

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

Α	В
1	1
1	2

Since $A \rightarrow AB$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_1 (i.e., (1,1), (1,2)).

$R_1 = \pi_{A, B}(R) \qquad R_2$	$=\pi_{A,C}(R)$
----------------------------------	-----------------

	•	
Α	В	
1	1	
1	2	
2	1	
3	2	
3	1	
_	_	

Α	C
1	3
1	2
2	3
3	2
3	3
4	2
4	3

R

Α	В	С
1	1	3
1	2	3 2
2	1	3
3	2	2
3	1	3
4 4	2	2
4	1	3

Example I NOT Lossi

NOT Lossless-join decomposition

Functional dependencies

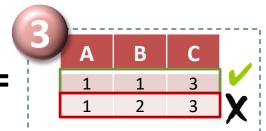
$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

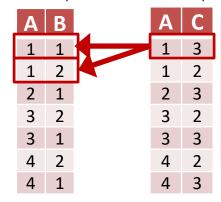
A	В
1	1
1	2

Since $A \rightarrow AB$ is **NOT** a functional dependency in F⁺, there can be **more than one tuples** with A=1 in R_1 (i.e., (1,1), (1,2)).



Therefore when we join R_1 and R_2 , more than one tuples will be generated (i.e., (1,3) in R_2 combine with (1,1) and (1,2) in R_1)

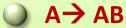
$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$



Observation:

The decomposition of R(A,B,C) into $R_1(\mathbf{A},B)$ and $R_2(\mathbf{A},C)$ is NOT lossless-join because

A AC (explained in previous slide), and



are **NOT** in F⁺.

R

Α	В	С
1	1	3
1	2	3
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Example II

Lossless-join

decomposition

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R_1 with A=1, B=1.

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

A	В
1	1
1	2

В	C
1	3
2	2

1	1
1	2
2	1
3	2
3	1
4	2

R

Α	В	С
1	1	3
1	2	3
2	1	3
	2	2
3 3 4	1	3
4	2	2
4	1	3

Example II Lossless-join decomposition **Functional dependencies**

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

Since $\mathbf{B} \rightarrow \mathbf{BC}$ is a functional dependency in F+, there is only one tuple with B=1 in R₂.

$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_{B, C}(R)$
-----------------------	-----------------------

Α	В
1	1
1	2
2	1

1	1
1	2
2	1
3	2
3	1
4	2
4	1

R

А	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Example II

Lossless-join

decomposition

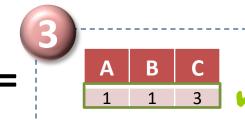
Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R_1 with A=1, B=1.

В	С
1	3

Since $B \rightarrow BC$ is a functional dependency in F^+ , there is only **one tuple** with B=1 in R_2 .



Therefore when we join R₁ and R₂, there will be **ONLY ONE tuple generated**, and that must be the corresponding tuple (1,1,3) in R.

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

Α	В	В	С
1	1	1	3
1	2	2	2
2	1		
3	2		
3	1		
4	2		

Observation:

The decomposition of R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$ is lossless-join because

 $B \rightarrow BC$

is in F+.

Testing for lossless-join decomposition

- Consider a decomposition of R into R₁ and R₂.
 - \bigcirc Schema of R = schema of R₁ \cup schema of R₂.
- **○** Let schema of $R_1 \cap$ schema of R_2 be R_1 and R_2 's common attributes.
 - \bigcirc A decomposition of R into R₁ and R₂ is lossless-join if and only if at least one of the following dependencies is in F⁺.

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

OR

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_2

- Question: Given R(A,B,C), F={B→C}, is the following a lossless join decomposition of R?
- Answer: To see if (R_1, R_2) is a lossless join decomposition of R, we do the following:
 - Find common attributes of R₁ and R₂: B
 - Verify if any of the FD below holds in F⁺, if one of the FD holds, then the decomposition is lossless join.

$$B \rightarrow R_1$$
 (i.e., $B \rightarrow AB$?)
 $B \rightarrow R_2$ (i.e., $B \rightarrow BC$?)

○ Since B → BC (by Augmentation rule on B → C), R_1 and R_2 are lossless join decomposition of R.

Section 2

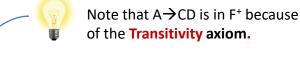
Dependency preserving

Decomposition

Dependency preserving

- When decomposing a relation, we also want to keep the functional dependencies.
 - A FD X → Y is preserved in a relation R if R contains all the attributes of X and Y.
- If a dependency is lost when R is decomposed into R₁ and R₂:
 - When we insert a new record in R_1 and R_2 , we have to obtain $R_1 \bowtie R_2$ and check if the new record violates the lost dependency before insertion.
 - It could be very inefficient because joining is required in every insertion!

Dependency preserving



- Onsider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$
 - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs}

IX			
Α	В	С	D
1	1	3	4
2	1	3	4
3	2	2	3
4	1	3	4
		1	

- If R is decomposed to R₁(A,B), R₂(B,C,D):
 - \bigcirc $F_1 = \{A \rightarrow B, trivials\}, the projection of <math>F^+$ on R_1^{r}
 - \bigcirc F₂ = {B \rightarrow CD, trivials}, the projection of F⁺ on R₂

$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_{B, C, D}$	(R)
-----------------------	-----------------------	-----

Decompose

_			,	,
1	В	В	С	D
L	1	1	3	4
2	1	2	2	3

This is a dependency preserving decomposition as:

$$(\mathsf{F}_1 \cup \mathsf{F}_2)^+ = \mathsf{F}^+$$

Let us illustrate the implication of dependency preserving in the next slide.

- Consider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$
- Is this a lossless join decomposition?
 - Yes! As $B \rightarrow R_2$ (i.e., $B \rightarrow BCD$) holds in F^+ . That mean we can recover R by $R_1 \bowtie R_2$.
- Why it is dependency preserving?

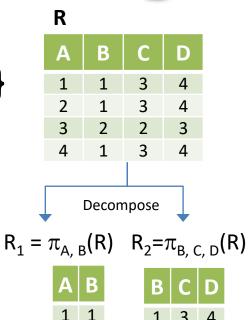
Think about it...

İ	 	4		into	R_1 and R_2 :
	_	В	С	D	

IŤ	we	insert	a	new	reco	r
				Α.	В	

We need to check if the new record will make the database violate any FDs in F⁺.

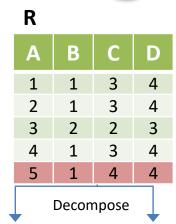
Is such decomposition allow us to do the validation on R₁ and R₂ ONLY? (But no need to join R₁ and R₂ to validate it?)



- \bigcirc F⁺ = { A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivials}
 - \bigcirc Inserting tuple (5,1,4,4) violates B \rightarrow CD.
- The decomposition is dependency preserving as we only need to check:
 - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ?

 This involves checking $F_1 = \{A \rightarrow B\}$.
 - Inserting
 1 4 4 violate any F₂ in R₂?
 - This involves checking $F_2 = \{B \rightarrow CD\}$.

We can check F_1 on R_1 and F_2 on R_2 only because $(F_1 \cup F_2)^+ = F^+$



$R_1 = \pi_{A, B}(R) R_1$	₂ =π _{B, C, D} (R)
---------------------------	--

A	В	В	С	D
1	1	1	3	4
2	1	2	2	3
3	2	1	4	4
4	1			
5	1			

Although among the two validations we haven't checked $A \rightarrow CD$, but since $A \rightarrow B$ is checked in F_1 , and $B \rightarrow CD$ is checked in F_2 , if we pass both F_1 and F_2 , it implies $A \rightarrow CD$.

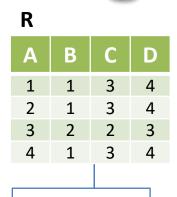
- What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$?
- R is decomposed to $R_1(A,B)$, $R_2(A,C,D)$
 - \rightarrow F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs}
 - ightharpoonup F₁ = {A ightharpoonup B, trivials}, the projection of F⁺ on R₁
 - $F_2 = \{$

_			
$(A \rightarrow CD + rivials)$ the projection of C^{+} on	D	1	1
$\{A \rightarrow CD, trivials\}$, the projection of F ⁺ on R ₂			
		3	2
is NOT a dependency preserving		4	1
is NOT a dependency preserving			

This is decomposition as:

$$(F_1 \cup F_2)^+ \neq F^+$$

Let us illustrate the implication of NOT dependency preserving in the next slide.



•	•	
$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_A$	$_{C,D}(R)$

Decompose

Α	С	D
1	3	4
2	3	4
3	2	3
4	3	4

- What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$?
- Is this a lossless join decomposition?
 - Yes! As $A \rightarrow R_1$ (i.e., $A \rightarrow AB$) holds in F^+ . That mean we can recover R by $R_1 \bowtie R_2$.
- Is it dependency preserving?

Think about it...

If we insert a new record

А	В		ע	:
5	1	4	4	III

ito R_1 and R_2 :



We need to check if the new record will make the database violate any FDs in F⁺. Is such decomposition allow us to do the validation on R_1 and R_2 only (but no need to join R_1 and R_2)?



$1 A, B, \gamma Z A, C, D,$	$R_1 = \pi_{A, B}(F$	$R_2 = \pi_A$	_{A, C, D} (R)
--------------------------------	----------------------	---------------	------------------------

A	В	
1	1	
2	1	
3	2	
4	1	

	_ · ·	
Α	С	D
1	3	4
2	3	4
3	2	3
4	3	4

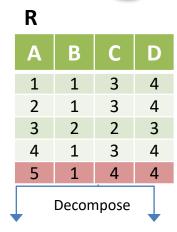
- \bigcirc F⁺ = { A \rightarrow B, B \rightarrow CD, A \rightarrow CD }
 - \bigcirc Inserting tuple (5,1,4,4) violates B \rightarrow CD.
- The decomposition is NOT dependency preserving as if we only check:
 - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ?

 This involves checking $F_1 = \{A \rightarrow B\}$.
 - Inserting $\begin{bmatrix} A & C & D \\ 5 & 4 & 4 \end{bmatrix}$ violate any F_2 in R_2 ?

This involves checking $F_2 = \{A \rightarrow CD\}$.

We CANNOT check F_1 on R_1 and F_2 on R_2 only because $(F_1 \cup F_2)^+ \neq F^+$

Decomposition in this way requires joining tables to validate B → CD for **EVERY INSERTION**!



$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_{A, C, D}$	(R)
-----------------------	-----------------------	-----

Α	В	A	
1	1	1	
2	1	2	
3	2	3	
4	1	4	
5	1	5	

Although we passed F_1 and F_2 , it doesn't mean that we passed all FDs in F!

It is because we lost the FD

B →CD in the decomposition.

What is the condition(s) for a decomposition to be **dependency preserving**?

- Let F be a set of functional dependencies on R.
 - \bigcirc R₁, R₂, ..., R_n be a decomposition of R.
 - F_i be the set of FDs in F⁺ that include only attributes in R_i.
- A decomposition is dependency preserving if and only if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$

Where F_i is the set of FDs in F^+ that include only attributes in R_i .

- \bigcirc Given R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$
 - \bigcirc Is $R_1(A, B)$, $R_2(B, C)$ a dependency preserving decomposition?
- First we need to find F⁺, F₁ and F₂.
 - $F^+ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}$

Note that A→C is in F⁺ because of the **Transitivity axiom**.

- \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true.
 - Since $F_1 \cup F_2 = F$, this implies $(F_1 \cup F_2)^+ = F^+$.
- This decomposition is dependency preserving.

- \bigcirc Given R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$
 - \bigcirc Is $R_1(A, B)$, $R_2(A, C)$ a dependency preserving decomposition?
- \bigcirc First we need to find F^+ , F_1 and F_2 .
 - $F^+ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}$

Note that A→C is in F⁺ because of the **Transitivity axiom**.

- \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true.
 - Since B→C disappears in R₁ and R₂, $(F_1 \cup F_2)^+ \neq F^+$.
- This decomposition is NOT dependency preserving.

Section 3

Boyce-Codd Normal Form

FD and redundancy

- Consider the following relation:
 - Customer(<u>id</u>, name, dptID)
 - \bigcirc F = { $\{id\} \rightarrow \{name, dptID\} \}$

\sim				
(l	ıst	O r	Mε	٦r
\sim	ィンし	U	111	

id	name	dptID
1	Kit	1
2	David	1
3	Betty	2
4	Helen	2

- {id} is a key in Customer.
 - Because the attribute closure of {id} (i.e., {id}+= {id, name, dptID}), which covers all attributes of Customer.

Observation: All non-trivial FDs in F form a key in the relation Customer.

- This implies that there are no other FD that is just involve a subset of columns in the relation.
- This implies that Customer has no redundancy.

FD and redundancy

- As another example:
 - Customer(<u>id</u>, name, dptID, building)
 - $F = \{ \{id\} \rightarrow \{name, dptID, building\} \}$ $\{dptID\} \rightarrow \{building\} \}$

_			
us	το	m	er

id	name	dptID	building
1	Kit	1	CYC
2	David	1	CYC
3	Betty	2	HW
4	Helen	2	HW

- \bigcirc {dptID} \rightarrow {building} brings redundancy. Why?
 - Tuples have the same dptID must have the same building (e.g., dptID=1, building="CYC").
 - But those tuples can have different values in *id* and *name*.
 For each different *id* values with the same *dptID*, *building* will be repeated (redundancy)
 For example, for tuples with (*id*=1,

FD and redundancy

- As another example:
 - Customer(<u>id</u>, name, dptID, building)
 - F = { {id} → {name, dptID, building} {dptID} → {building} }

	IJS	tn	m	er
<u> </u>	uJ	·		CI

id	name	dptID	building
1	Kit	1	CYC
2	David	1	CYC
3	Betty	2	HW
4	Helen	2	HW

- How to check?
 - Check if the attribute set closure of {dptID} covers all attributes in Customer. ({dptID}⁺ = {dptID, building} ≠ Customer)

Redundancy is related to FDs. If there is an FD $\alpha \rightarrow \beta$, where $\{\alpha\}^+$ does not cover all attributes in R, then we will have redundancy in R!

Boyce-Codd Normal Form

- Summarizing the observations, a relation R has no redundancy, or in Boyce-Codd Normal Form (BCNF), if the following is satisfied:
 - \bigcirc For all FDs in **F**⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

We won't border with trivial FDs such as
$$A \rightarrow A$$
, $AB \rightarrow A$...etc i.e., The attribute set closure of α is a key (superkey) for R i.e., The attribute set closure of α , represented as $\{\alpha\}^+$, covers all attributes in \mathbf{R} .

In other words, in BCNF, every non-trivial FD forms a key.

Formally, for verifying if R is in BCNF

- For each non-trivial dependency $\alpha \rightarrow \beta$ in **F**⁺ (the functional dependency closure), check if α ⁺ covers the whole relation (i.e., whether α is a superkey).
- igoplus If any $lpha^+$ does not cover the whole relation, **R** is not in BCNF.

Simplified test:

It suffices to check only the dependencies in the given F for violation of BCNF, rather than check all dependencies in F⁺

For example, given R(A,B,C); $F = \{A \rightarrow B, B \rightarrow C\}$, we only need to check if both $\{A\}^+$ and $\{B\}^+$ cover $\{A,B,C\}$. We do not need to derive $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, ...etc\}$ and check each FD because $A \rightarrow C$ already considered when computing $\{A\}^+$.

- When the However, if we decompose R into R_1 and R_2 , we cannot use only F to check if the "decomposed" relations (i.e., R_1 and R_2) is BCNF, we have to use F⁺ instead.
- Illustration
 - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C}

To test if **R** is in BCNF, it suffices to check only the dependencies in **F** (but not **F**⁺)

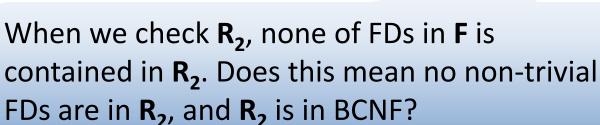
F	?			
4	A	В	С	D
	1	1	1	1
	1	1	1	2
	1	1	1	3
	1	1	1	4
	1	1	1	5

An example R that satisfies F

As illustrated through this instance, since $\{A\}^+ = \{A,B,C\} \neq \{A,B,C,D\}$, this implies that it will cause redundancy when we have tuples with the same value across $\{ABC\}$ but different values in D.

To illustrate why we cannot use only F to test decomposed relations for BCNF, let's try to decompose R into $R_1(A, B)$ and $R_2(A, C, D)$

- Illustration
 - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C}
- \bigcirc Is $R_2(A, C, D)$ in BCNF?



R			
A	В	С	D
1	1	1	1
1	1	1	2
1	1	1	3
1	1	1	4
1	1	1	5

R₁(A, B) R₂(A, C, D)

A B A C D

1 1 1 1 1

1 1 2

1 1 3

No! We need to use **F**⁺ to verify if **R**₂ is BCNF

- \bigcirc In R₂(A, C, D), A \rightarrow C is in F⁺, because:
 - \bigcirc A \rightarrow C can be obtained by transitivity rule on A \rightarrow B and B \rightarrow C
 - \bigcirc There is a non trivial FD $A \rightarrow C$ in R_2 that we have missed!
- Therefore in R₂ we check {A}⁺ = {A,C} ≠ {A,C,D}
 - Thus, A is not a key in R₂
 - \bigcirc $\mathbf{R_2}$ is NOT in BCNF.

Conclusion: When we test whether a **decomposed relation** is in BCNF, we must project F^+ onto the relation (e.g., R_2), not F!

R ₁ (A, B)	$R_2(A, C, D)$
A B	A C D
1 1	1 1 1
	1 1 2

Section 4

Normalization

Normalization goal

- When we decompose a relation R with a set of functional dependencies F into $R_1, R_2, ..., R_n$, we try to meet the following goals:
 - 1. Lossless-join Avoid the decomposition result in information loss.
 - ② 2. No Redundancy The decomposed relations R_i should be in Boyce-Codd Normal Form (BCNF). (There are also other normal forms.)
 - 3. Dependency preserving Avoid the need to join the decomposed relations to check the functional dependencies.

- Onsider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, is R in BCNF? If not, decompose R into relations that are in BCNF.
- Is R in BCNF?
 - Because $\{B\}^+=\{B,C\} \neq \{A,B,C\}$

- A B C
 1 1 2
 2 1 2
 3 1 2
 4 1 2
- Since {B}+ does not cover all attributes in R, R is NOT in BCNF.

How should we decompose **R** such that the decomposed relations are always lossless join?

Note: A decomposition is lossless join if at least one of the following dependencies is in F⁺

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

OR

Idea: To make the decomposition always lossless join, we can pick the FD $A \rightarrow B$ and make the decomposed relation as:

- \bigcirc R₁(**A**,**B**) the attributes in the L.H.S. and R.H.S. of the FD.
- Arr R₂(**A**,**C**) the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁.
- If we decompose the relation R in this way the following must be true:

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

- \bigcirc Schema of $R_1 \cap schema$ of R_2 is **A**.
- \bigcirc A \rightarrow R₁= A \rightarrow AB must be true because R₁ must consists of the L.H.S. and R.H.S. of the FD A \rightarrow B in F.

$$F = \{A \rightarrow B, B \rightarrow C\}$$
 $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, trivial FDs\}$

	R ₁ (A, B)	$R_2(A, C)$
F _x	A → B	A→C

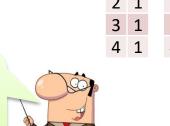
- Since $\{A\}^+ = \{A,B\} = R_1$, $\{A\}$ is a key in R_1 .
- \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF.

R A B C 1 1 2 2 1 2 3 1 2

\bigcirc Is $R_2(A, C)$ in BCNF?

- Since $\{A\}^+ = \{A,C\} = R_2, \{A\}$ is a key in R_2 .
- Since all FDs in F₂ forms a key, R₂ is in BCNF.

Therefore, decomposing R(A, B, C) with $F = \{A \rightarrow B, B \rightarrow C\}$ to $R_1(A, B)$ and $R_2(A, C)$ result in a lossless join decomposition (no information lost), and BCNF relations (no redundancy)



- Is the decomposition dependency preserving?
 - \bigcirc F = {A \rightarrow B , B \rightarrow C}
 - $(F_1 \cup F_2) = (A \rightarrow B, A \rightarrow C)$
- Obline B \rightarrow C disappears in R₁ and R₂, $(F_1 \cup F_2)^+ \neq F^+$.
- The decomposition is NOT dependency preserving.

Note: Although the decomposition is not dependency preserving, but it is lossless join, so we can join R_1 and R_2 to test $B \rightarrow C$.

BCNF decomposition algorithm

```
result = \{R\};
done = false;
                                                                                                       \alpha is not a key;
compute F<sup>+</sup>;
                                                                                                       \alpha \rightarrow \beta causes R<sub>i</sub>
while (done == false) {
                                                                                                       to violate BCNF
    if (there is a schema R<sub>i</sub> in result and R<sub>i</sub> is not in BCNF)
        let \alpha \rightarrow \beta be a non-trivial FD that holds on R<sub>i</sub> s.t. \{\alpha\}^+ \neq R_i
        result = (result -R_i) \cup (\alpha \beta) \cup (R_i - \beta)
    else
                                                                3. Create a relation containing
        done = true;
                                                                 R_i but with \beta removed.
                                                2. Create a relation with only \alpha and \beta
                       1. Delete R<sub>i</sub>
```

Each R_i is in BCNF, and the decomposition must be lossless-join

	R ₁ (B, C)	R ₂ (A, B)
F_{x}	$B \rightarrow C$	A→B

Consider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, decompose R into relations that are in BCNF.

Alternative decomposition: To make the decomposition always lossless join, we can pick the FD B→C and make the decomposed relation as:

- $R_1(\mathbf{B},\mathbf{C})$ the attributes in the L.H.S. and R.H.S. of the FD.
- $R_2(A,B)$ the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁.

 R_2

$$F = \{A \rightarrow B, B \rightarrow C\}$$
 $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, \text{ trivial FDs}\}$

	R ₁ (B, C)	$R_2(A, B)$
F_{x}	$B \rightarrow C$	A→B

- Operation: $R_1(B, C)$, $R_2(A, B)$
- \bigcirc Is R₁(B, C) in BCNF?

 - Since $\{B\}^+ = \{B,C\} = R_1, \{B\} \text{ is a key in } R_1.$
 - \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF.
- \bigcirc Is $R_2(A, B)$ in BCNF?

 - Since $\{A\}^+ = \{A,B\} = R_2$, $\{A\}$ is a key in R_2 .
 - Since all FDs in F₂ forms a key, R₂ is in BCNF.

	R ₁ (B, C)	R ₂ (A, B)
F_{x}	$B \rightarrow C$	A→B

- Is the decomposition lossless join?
 - From the illustration in example 1, the decomposition must be lossless join.

- R
 A B C
 1 1 2
 2 1 2
 3 1 2
 4 1 2
- Is the decomposition dependency preserving?
 - \bigcirc F = {A \rightarrow B, B \rightarrow C}
 - $(F_1 \cup F_2) = (B \rightarrow C, A \rightarrow B)$
- Since $F = (F_1 \cup F_2)$, this implies $(F_1 \cup F_2)^+ = F^+$.
- B C A B
 1 2 1 1
 2 1

 R_2

- The decomposition is dependency preserving.
 - That means if we insert a new tuple, if the new tuple does not violate F₁ in R₁, and F₂ in R₂, it won't violate F⁺ in R.

Consider a relation R in a bank: R (b_name, b_city, assets, c_name, l_num, amount)

 $F = \{ \{b_name\} \rightarrow \{assets, b_city\},$ $\{I \mid num\} \rightarrow \{amount, b \mid name\},$ $\{I_num, c_name\} \rightarrow \{all other attributes\}\}$ one $\{amount, b_name\}$ value.

Each specific value in bname is corresponds to at most one {asset, **b** city value

Each I num corresponds to at most

Decomposition

Each { I num, c name} corresponds to at most one {b name, b city, assets, amount } value.

- With $\{b_name\} \rightarrow \{assets, b_city\}, \{b_name\}^+ \neq R$, R is not in BCNF.
- Decompose R into $R_1(b_name, assets, b_city)$ and R₂(b_name, c_name, l_num, amount).

- Is R₁(b_name, assets, b_city) in BCNF?
 - \bullet $F_1 = \{ \{b_name\} \rightarrow \{assets, b_city\}, trivial FDs \} \leftarrow {}^{Projection of F^+}_{on F_1}.$
 - $igoplus \{b_name\}^+ = \{b_name, assets, b_city\} = R_1,$ so $\{b_name\}$ is a key in R_1 .
 - Since all FD in F₁ forms a key in R₁, R₁ is in BCNF.
- Is R₂(b_name, c_name, l_num, amount) in BCNF?

 - $\{I_num\}^+ = \{I_num, amount, b_name\} \neq R_2,$ so $\{I_num\}$ is NOT a key in R_2 .
 - \bigcirc Since NOT all FD in F₂ forms a key in R₂, R₂ is NOT in BCNF.

- Picking {I_num} → {amount, b_name}, R₂ is further decomposed into:
 - R₃(I_num, amount, b_name)
 - R₄(c_name, l_num)
- Is R₃(I_num, amount, b_name) in BCNF?

 - $\{I_num\}^+ = \{I_num, amount, b_name\} = R_3$, so $\{I_num\}$ is a key in R_3 .
 - \bigcirc Since all FD in F₃ forms a key in R₃, R₃ is in BCNF.

- Is R₄(c_name, l_num) in BCNF?
 - $F_4 = \{trivial FDs\}$
 - \bigcirc Since all FD in F₄ forms a key in R₄, R₄ is in BCNF.
- \bigcirc Now, R₁, R₃ and R₄ are in BCNF;
- The decomposition is also lossless-join.

Augmentation

- The decomposition is also dependency preserving.

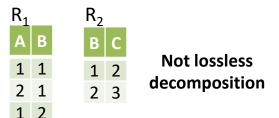
```
\{I\_num\} \rightarrow \{b\_name\} \dots (i)
by Decomposition of \{I\_num\} \rightarrow \{amount, b\_name\}
\{I\_num\} \rightarrow \{assets, b\_city\} \dots (ii)
by Transitivity of (i) and \{b\_name\} \rightarrow \{assets, b\_city\}
\{I\_num\} \rightarrow \{b\_name , assets, b\_city, amount\} by Union of F<sub>3</sub> and (ii)
\{I\_num, c\_name\} \rightarrow \{I\_num , c\_name, b\_name , assets, b\_city, amount\} by
```

- Therefore $F_1 \cup F_3 \cup F_4 = F$, which implies $(F_1 \cup F_3 \cup F_4)^+ = F^+$.
- The decomposition is dependency preserving.

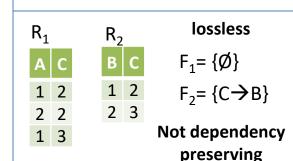
BCNF doesn't imply dependency preserving

- It is not always possible to get a BCNF decomposition that is dependency preserving.
- R
 A B C
 1 1 2
 2 1 2
 1 2 3

- Onsider R(A, B, C); $F = \{AB \rightarrow C, C \rightarrow B\}$
- There are two candidate keys: {AB}, and {AC}.
 - AB⁺ = {A,B,C} = R
 - AC⁺ = {A,B,C} = R
- R is not in BCNF, since C is not a key.
- Decomposition of R must fail to preserve AB > C.



	R_2			R_1	
	С	Α	В	Α	
Not lossless	2	1	1	1	
decomposition	2	2	1	2	
	2	1	1	1	



Motivating example

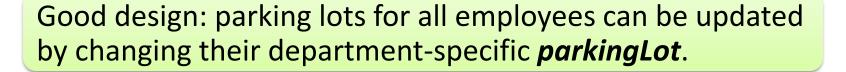
- Back to our motivating example, we have:
 - Employees(eid, name, parkingLot, did, since)
 - Departments(did, dname, budget)
- "Employees who work in the same department must park at the same parkingLot." implies the following FD:

FD: did → parkingLot

- Is Employees in BCNF?
 - \bigcirc {did}⁺ = {parkingLot} \neq {eid, name, parkingLot, did, since}
 - Since did is not a key, Employees is NOT in BCNF.

Normalization

- Employees(<u>eid</u>, name, parkingLot, did, since) is decomposed to
 - Employees2(eid, name, did, since)
 - Dept_Lots(did, parkingLot)
- With Departments (<u>did</u>, dname, budget), the above two decomposed relations are further refined to
 - Employees2(eid, name, did, since)
 - Departments(did, dname, parkingLot, budget)



Summary

- Relational database design goals
 - Lossless-join
 - No redundancy (BCNF)
 - Dependency preservation
- It is not always possible to satisfy the three goals.
 - A lossless join, dependency preserving decomposition into BCNF may not always be possible.
- SQL does not provide a direct way of specifying FDs other than superkeys.
 - Can use assertions to check FD, but it is quite expensive.

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

- a. {A,C} is a candidate key for R.
- b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition.

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

- a. {A,C} is a candidate key for R.
- b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- c. T decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition.

Question: How to test if {A,C} is a **candidate key** of R or not?

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

- a. {A,C} is a candidate key for R.
- b. The decomposition of $R \rightarrow R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- c. T decomposition of R int. R and $R_2(B,C)$ is a lossless-join decomposition.

Question: How to test if {A,C} is a **candidate key** of R or not?

Answer:

- 1) [Superkey] A candidate key is a superkey. If {A,C} is a superkey, its attribute closure {A,C}+ must contains all attributes in R!
- 2) [Minimal] If {A,C} is minimal, it is a candidate key!

Is {A,C} a superkey?

- 1) Find attribute closure of A: $\{A\}^+ = \{A,B\}$. It is not a superkey.
- 2) Find attribute closure of C: $\{C\}^+ = \{C\}$. It is not a superkey.
- 3) Find attribute closure of $\{A,C\}$: $\{A,C\}^+ = \{A,B,C\}$. Since it contains all attributes of R, it is a superkey.

Is {A,C} minimal?

4) Since none of subset of {A,C} is a key, {A,C} is minimal, it is a candidate key.

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

- a. {A,C} is a candidate key for R.
- b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition.

Question: What do we mean by lossless-join decomposition?

Question: How to test if a decomposition is lossless-join decomposition?

1) Common attribute of R₁ and R₂:

Answer: A decomposition is **lossless-join decomposition** if the original relation can be obtained after joining the decomposed relations.

Answer: A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F⁺:

- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

{A,C} is a candidate key for R.

- The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- Deduction of R into $R_1(A, L, L)$ (B.C) is a lossless-join composition.

Question: What do we mean by lossless-join decomposition?

Question: How to test if a decomposition is lossless-join decomposition?

- 1) Common attribute of R_1 and R_2 :
- 2) $A \rightarrow AB$ in F^+ ?

Since $A \rightarrow B$, $A \rightarrow AB$ is true (Augmentation), $A \rightarrow AB$ in F^{+} !

3) Therefore, the decomposition is a lossless-join decomposition.

Answer: A decomposition is **lossless-join decomposition** if the original relation can be obtained after joining the decomposed relations.

Answer: A decomposition is lossless-join decomposition

iff at least one of the following dependencies is in F+:

- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

Given a relation R(A,B,C) and a functional dependency {A→B} that holds on R, which of the following statements is/are correct?

- a. {A,C} is a candidate key for R.
- **/**
- b. The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.
- c. The decomposition of R into $R_1(A,B)$ and $R_2(B,C)$ is a lossless-join decomposition.

Question: How to test if a decomposition is lossless-join decomposition?

1) Common attribute of R₁ and R₂:

Answer: A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F⁺:

- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

Given a relation R(A,B,C) and a functional dependency $\{A \rightarrow B\}$ that holds on R, which of the following statements is/are correct?

{A,C} is a candidate key for R.

The decomposition of R into $R_1(A,B)$ and $R_2(A,C)$ is a lossless-join decomposition.

The decomposition of R into R₁(A,B) and R₂(B,C) is a lossless-join decomposition.

Ouestion: How to test if a decomposition is lossless-join decomposition?

- 1) Common attribute of R_1 and R_2 :

- 2) $\mathbf{B} \rightarrow \mathbf{AB}$ in \mathbf{F}^+ ?
- 3) $\mathbf{B} \rightarrow \mathbf{BC}$ in \mathbf{F}^+ ?

- **Answer:** A decomposition is lossless-join decomposition
- iff at least one of the following dependencies is in F*:
- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

4) Therefore, the decomposition is **NOT** a lossless-join decomposition.

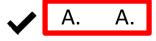
Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)?
 - A. A.
 - B. Question: What do we mean by
 - C. D. the attribute closure of C?
 - D. E.
 - E. None of the above.

Answer: The attribute closure of C is the set of attributes that can be functionally determined by C.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)?



- B. B.
- C. D.
- D. E

Question: What do we mean by the attribute closure of C?

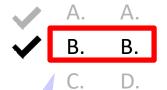
Answer: The attribute closure of C is the set of attributes that can be functionally determined by C.

- E. None of the above.
- Question: C→A holds?

- 1. Since $C \rightarrow AB$,
- 2. $C \rightarrow A$ and $C \rightarrow B$ (decomposition)

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)?



Question: What do we mean by the attribute closure of C?

Answer: The attribute closure of C is the set of attributes that can be functionally determined by C.

- E. None of the above.
- Question: C→B holds?

- 1. Since $C \rightarrow AB$,
- 2. $C \rightarrow A$ and $C \rightarrow B$ (decomposition)

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

i) Which of the following attributes is NOT in the attribute closure of C (i.e., C^+)?

D. E.

Question: What do we mean by the attribute closure of C?

Answer: The attribute closure of C is the set of attributes that can be functionally determined by C.

E. None of the above.

Question: C→D holds?

Think in this way:

- 1. Since we have BCE \rightarrow D, can we have C \rightarrow BCE?
- 2. We have $C \rightarrow B$, therefore $C \rightarrow BC$ (augmentation), can we show that $C \rightarrow E$?
- 3. Since $C \rightarrow A$ and $A \rightarrow E$, $C \rightarrow E$ (transitivity)
- 4. Since $C \rightarrow BC$ and $C \rightarrow E$, $C \rightarrow BCE$ (union)
- 5. Since $C \rightarrow BGE$ and $BCE \rightarrow D$, $C \rightarrow D$ (transitivity)

Consider the relation R(A,B,C,D,E) with the following functional dependencies F = 0 $\{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Which of the following attributes is NOT in the attribute closure of C (i.e., C+)?

- - None of the above.

Question: What do we mean by **Answer:** The attribute closure of C is the attribute closure of C? the set of attributes that can be functionally determined by C.

Question: C > E holds?

Think in this way:

- 1. Since we have BCE \rightarrow D, can we have C \rightarrow BCE?
- 2. We have $C \rightarrow B$, therefore $C \rightarrow BC$ (augmentation), can we show that $C \rightarrow E$?
- 3. Since $C \rightarrow A$ and $A \rightarrow E$, $C \rightarrow E$ (transitivity)
- 4. Since $C \rightarrow BC$ and $C \rightarrow E$, $C \rightarrow BCE$ (union)
- 5. Since $C \rightarrow BGE$ and $BCE \rightarrow D$, $C \rightarrow D$ (transitivity)

- Since C→AB,
- $C \rightarrow A$ and $C \rightarrow B$ (decomposition)
- Since $C \rightarrow A$ and $A \rightarrow E$,
- C→E (transitivity)
- Since $C \rightarrow B$ and $C \rightarrow E$,
- $C \rightarrow BE (union)$
- Since C→BE,
- C→BCE (augmentation)
- Since BCE→D and C→BCE,
- C→D (transitivity)
- Hence, C⁺ = {A,B,C,D,E}
- Answer: E

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)?
 - i. $BE \rightarrow D$
 - ii. BD→ABCDE
 - iii. AB→D
 - iv. $CE \rightarrow A$

Question: What do we mean by the FD closure?

Answer: The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺).

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

 Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)?

 $AB \rightarrow D$

 $CE \rightarrow A$

iii.

iv.

Question: What do we mean by the FD closure?

Answer: The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺).

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

• Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)?

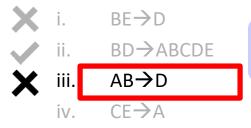
Answer: The set of all functional dependencies that can be logically implied by F is called the closure of F (or F⁺).

Think in this way:

- 1. Start from $BD \rightarrow AC$, can we make R.H.S. more close to ABCDE?
- 2. BD \rightarrow ABCD (augmentation), can we show that ABCD \rightarrow ABCDE?
- 3. Since $A \rightarrow E$, we have ABCD \rightarrow ABCDE (augmentation)
- 4. Therefore, we can show that BD→ABCDE is true!

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

 Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)?



Question: What do we mean by the FD closure?

Answer: The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺).

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

 Which of the following functional dependencies is NOT in the closure of F (i.e., F⁺)?

Question: What do we mean by the FD closure?

Answer: The set of **all** functional dependencies that can be logically implied by F is called the closure of F (or F⁺).

Think in this way:

- 1. We have $C \rightarrow AB$, and therefore we have $C \rightarrow A$ (decomposition); can we show that $CE \rightarrow C$?
- 2. CE→C is always true due to reflexivity!
- 3. Therefore, we have $CE \rightarrow C$ and $C \rightarrow A$, we can show that $CE \rightarrow A$ is true (transitivity)!

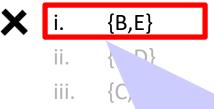
Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Which of the following is/are candidate key(s) of R?
 - i. $\{B,E\}$
 - ii. {B,D}
 - iii. {C,E}

Question: How to show if a set of attribute is a **candidate key** or not?

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

Which of the following is/are candidate key(s) of R?



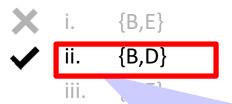
Question: How to show if a set of attribute is a **candidate key** or not?

Answer: 1) It has to be a super key.
2) It has to be minimal.

Question: Does $\{B,E\}^+$ covers all attributes in R? i.e. BE \rightarrow ABCDE?

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

• Which of the following is/are candidate key(s) of R?



Question: How to show if a set of attribute is a **candidate key** or not?

Answer: 1) It has to be a super key.
2) It has to be minimal.

Question: Does $\{B,D\}^+$ covers all attributes in R? i.e. $BD \rightarrow ABCDE$?

Think in this way:

- 1. BD \rightarrow BD must be true, therefore, we have to show
 - 1) $BD \rightarrow A$, 2) $BD \rightarrow C$, and 3) $BD \rightarrow E$.
- 2. Since $BD \rightarrow AC$, $BD \rightarrow A$ and $BD \rightarrow C$ are true (decomposition)
- 3. How about $BD \rightarrow E$? We have $A \rightarrow E$, can we show that $BD \rightarrow A$?
- 4. BD \rightarrow A already shown to be true, so now we have BD \rightarrow A and A \rightarrow E, therefore BD \rightarrow E is true!

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

• Which of the following is/are candidate key(s) of R?

Question: How to show if a set of attribute is a **candidate key** or not?

Answer: 1) It has to be a super key.
2) It has to be minimal.

- **1. Since we have already shown in part a) that** {C}+covers all attributes of R, therefore C is a candidate key of R.
- 2. Hence, {C,E} must **NOT** be a candidate key of R because {C,E} is **not minimal**.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct?
 - i. This is a lossless-join decomposition.
 - ii. The decomposition is dependency preserving.
 - iii. R_1 and R_2 are in BCNF.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

• Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct?

- This is a lossless-join decomposition.
- ii. The decomposition is dependency preserving.
- iii. R_1 and R_2 are in BCNF.

Question: How to test if a decomposition is lossless-join decomposition?

Answer: A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F*:

- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2
- 1. Common attribute of R_1 and R_2 is **{A,C}**.
- 2. Test if any of the following FD are in F⁺:
 - 1. AC \rightarrow ABCD
 - 2. AC \rightarrow ACE
- 3. Since $A \rightarrow E$, $AC \rightarrow ACE$ is true (augmentation).
- 4. Therefore, this is a lossless-join decomposition.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct?
- i. This is a lossless-join decomposition.
- ii. The decomposition is dependency preserving.
 - iii R_1 and R_2 are in BCNF.

Question: How to test if a decomposition is dependency preserving or not?

Answer: A decomposition is dependency preserving iff:

$$(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$$

Where F_i is the set of FDs in F^+ that include only attributes in R_i .

- 1. Determine F_1 and F_2 , the projection of F^+ on R_1 and R_2
 - 1. $F_1 = \{CD \rightarrow B, C \rightarrow ABD, BD \rightarrow AC\}.$
 - 2. $F_2 = \{ A \rightarrow E, C \rightarrow AE \}.$
- 2. Although {BCE \rightarrow D, CD \rightarrow BE} are missing, but we know that {C}⁺= R, so we have C \rightarrow ABD in F₁ and C \rightarrow AE in F₂
 - BCE \rightarrow D and CD \rightarrow BE both have C on L.H.S., so these two FDs are in $(F_1 \cup F_2)^+$
- 3. Therefore $(\mathbf{F}_1 \cup \mathbf{F}_2)^+ = \mathbf{F}^+$.

- 97
- 4. Therefore, this decomposition is dependency preserving.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct?
 - i. This is a lossless-join decomposition.
 - ii. The decomposition is dependency preserving.
 - iii. R₁ and R₂ are in BCNF.

Question: How to test if the decomposed relations are in BCNF?

Test if R₁ is in BCNF:

Answer: In BCNF, every non-trivial FD forms a key!

- 1. Determine F_1 , the projection of F^+ on R_1 .
 - 1. $F_1 = \{CD \rightarrow B, C \rightarrow AB, BD \rightarrow AC, C \rightarrow D\}.$
- 2. Determine if all FDs in F_1 forms a key of R_1 .
 - 1. Is {CD} a key in R_1 ? Yes! Because {CD}+={ABCD} in R_1 , contains all attributes in R_1 .
 - 2. Is {C} a key in R₁? Yes! Because {C}+={ABCD} in R₁, contains all attributes in R₁.
 - 3. Is {BD} a key in R_1 ? Yes! Because {BD}+={ABCD}, contains all attributes in R_1 .
- 3. Since all non-trivial FDs in F_1 forms a key, R_1 in BCNF.

Consider the relation R(A,B,C,D,E) with the following functional dependencies $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$ which hold in it.

- Suppose that relation R is decomposed into $R_1(A,B,C,D)$ and $R_2(A,C,E)$. Which of the following statements is/are correct?
- i. This is a lossless-join decomposition.
- ii. The decomposition is dependency preserving.
- \mathbf{X} iii. R_1 and R_2 are in BCNF.

Question: How to test if the decomposed relations are in BCNF?

Test if R₂ is in BCNF:

- L. Determine F_2 , the projection of F^+ on R_2 .
 - 1. $F_2 = \{A \rightarrow E, C \rightarrow A\}.$
- 2. Determine if all FDs in F_2 forms a key of R_2 .
 - 1. Is {A} a key in R₂? No! Because {A}+={AE}, not covering all attributes in R₂.
- 3. Since **not all non-trivial** FDs in F₂ forms a key, R₂ is NOT in BCNF.

Answer: In BCNF, every non-trivial FD forms a key!

Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema.

- a) Find all candidate keys of R. Show your steps.
- b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving?

Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema.

- a) Find all candidate keys of R. Show your steps.
- Is C a candidate key?
 - Since C⁺ is {A, B, C, D, E}, C is a superkey, and since C is minimal, it is a candidate key.
 - Since C is a candidate key, any supersets of C are not candidate keys.
- How about the combinations of other attributes?
 - C does not appear on the RHS of any non-trivial FD, therefore the value of C cannot be functionally determined by other attribute(s).
 - All combinations of other attributes (i.e. A,B,D, and E) cannot form a key. (Their attribute closure must not contain C)
- Thus, R has only one candidate key, which is C.

Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema.

- b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving?
- = R₁ (A,D), R₂ (B,C,D,E)
- R1 in BCNF?
 - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$
 - Is D a key in R₁?
 - Since D is a key in R_1 , all non-trivial FDs in F_1 forms a key, thus R_1 is in BCNF.
- R2 in BCNF?
 - \Box F_2 is the projection of F^+ on R_2 : $F_2 = \{C \rightarrow BDE$, and the trivial FDs $\}$
 - Is C a key in R_2 ?
 - Since C is a key in R₂, all non-trivial FDs in F₂ forms a key, thus R₂ is in BCNF.

Step 1. Decompose R into two relations R_1 and R_2 , and make R_1 a BCNF.

Look at $D \rightarrow A$ in F, make R_1 as (A,D).

Then R_2 is (B,C,D,E). Why include D in R_2 ?

In BCNF, every non-trivial FD forms a

If not, further decompose it using

Step 2. Check if R_1 and R_2 are in BCNF.

102 key!

Step 1.

Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema.

- b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving?
- = R₁ (A,D), R₂ (B,C,D,E)
- R1 in BCNF?
 - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$
 - □ Is D a key in R₁?
 - \square Since D is a key in R₁, all non-trivial FDs in F₁ forms a key, thus R₁ is in BCNF.
- R2 in BCNF?
 - \Box F_2 is the projection of F^+ on R_2 : $F_2 = \{C \rightarrow BDE$, and the trivial FDs $\}$
 - Is C a key in R₂?
 - Since C is a key in R_2 , all non-trivial FDs in F_2 forms a key, thus R_2 is in BCNF.
- Is it a lossless-join decomposition?
 - □ Common attribute among R_1 and R_2 = D
 - \square D \rightarrow R₁ (i.e. AD) holds in F⁺
 - Therefore it is a lossless-join decomposition.

Answer: A decomposition is lossless-join decomposition iff

- at least one of the following dependencies is in F⁺:
- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

Consider the schema R(A, B, C, D, E) and the set of functional dependencies $F=\{D\rightarrow A, C\rightarrow BDE\}$ which holds in the schema.

- b) Give a lossless join decomposition of R into relations in BCNF. Is the decomposition dependency preserving?
- = R₁ (A,D), R₂ (B,C,D,E)
- R1 in BCNF?
 - \Box F_1 is the projection of F^+ on R_1 : $F_1 = \{D \rightarrow A$, and the trivial FDs $\}$
 - Is D a key in R₁?
 - Since D is a key in R_1 , all non-trivial FDs in F_1 forms a key, thus R_1 is in BCNF.
- R2 in BCNF?
 - \Box F₂ is the projection of F⁺ on R₂: F₂ = {C \rightarrow BDE, and the trivial FDs}
 - Is C a key in R_2 ?
 - Since C is a key in R_2 , all non-trivial FDs in F_2 forms a key, thus R_2 is in BCNF.
- Is it a lossless-join decomposition?
 - \square Common attribute among R₁ and R₂ = D
 - \square D \rightarrow R₁ (i.e. AD) holds in F⁺
 - ☐ Therefore it is a lossless-join decomposition.
- Is it a dependency preserving decomposition?
 - Since $(F_1 \cup F_2)^+ = F^+$, it is a dependency preserving decomposition.

Answer: A decomposition is dependency preserving iff:

 $(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$

Where F_i is the set of FDs in F⁺ that include only attributes in

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

- a) Find A⁺ and C⁺.
- b) Find a candidate key of R.
- c) Is $B \rightarrow D$ in F^+ ?
- d) Is $D \rightarrow BC$ in F^+ ?
- e) Is $AC \rightarrow D$ in F^+ ?
- f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving?
- g) Is R in BCNF? If not, decompose R into relations in BCNF.

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

- a) Find A⁺ and C⁺.
 - $A^+ = \{AB\}$
 - $C^+ = \{C\}$
- b) Find a candidate key of R.
 - AC or BC or CD

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

- c) Is $B \rightarrow D$ in F^+ ?
 - No. Because $B^+ = \{B\}$
- d) Is D \rightarrow BC in F⁺?
 - No. Because D⁺={ABD}
- e) Is $AC \rightarrow D$ in F^+ ?
 - Yes. Because A→B and BC→D, we know that AC→D (pseudotransitivity)

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

- f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving?
- Lossless?
 - $R_1 \cap R_2 = (B,C)$
 - $(B,C) \rightarrow R_2$
 - Hence, it is a lossless decomposition.

Question: How to test if a decomposition is lossless-join decomposition?

Answer: A decomposition is lossless-join decomposition iff at least one of the following dependencies is in F*:

- 1) common attribute of R_1 and $R_2 \rightarrow$ schema of R_1
- 2) common attribute of R_1 and $R_2 \rightarrow$ schema of R_2

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

- f) R is decomposed into $R_1(A, B, C)$ and $R_2(B, C, D)$. Is the decomposition lossless? Is the dependency preserving?
- Lossless?
 - $-R_1 \cap R_2 = (B,C)$
 - $(B,C) \rightarrow R_2$
 - Hence, it is a lossless decomposition.
- Dependency preserving?
 - $F_1 = \{A \rightarrow B\}; F_2 = \{BC \rightarrow D, D \rightarrow B\}$
 - Since $(F_1 \cup F_2)^+$ does not equal to F^+ $(D \rightarrow A)$ is not preserved), the decomposition is not dependency preserving

Answer: A decomposition is dependency preserving iff:

$$(F_1 \cup F_2 \cup \cup F_n)^+ = F^+$$

Where F_i is the set of FDs in F⁺ that include only attributes in R_i.

Question: How to test if a

decomposition is dependency

preserving or not?

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

g) Is R in BCNF? If not, decompose R into relations in BCNF.

- Is R in BCNF?
 - No. A→B and D→A violate BCNF as neither A nor D is a super key in R.

Question: How to test if the decomposed relations are in BCNF?

Answer: In BCNF, every non-trivial FD forms a key!

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

g) Is R in BCNF? If not, decompose R into relations in BCNF.

- If not, decompose R into relations in BCNF.
 - Decompose R into R₁(A, B) and R₂(A, C, D)
 - R₁ is in BCNF?
 - $F_1 = \{A \rightarrow B\}$, A is a key in R1, R_1 is in BCNF!
 - $-R_2$ is in BCNF?
 - $F_2 = \{D \rightarrow A\}$, D is not a key in R_2 , R_2 is not in BCNF!

Step 1. Decompose R into two relations R_1 and R_2 , and make R_1 a BCNF.

Look at $A \rightarrow B$ in F, make R_1 as (A,B). Then R_2 is (A,C,D). Step 2. Check if R1 and R2 are in BCNF. If not, further decompose it using Step 1.

In BCNF, every non-trivial FD forms a key!

Given R=(A, B, C, D), F={ $A \rightarrow B$, BC $\rightarrow D$, D $\rightarrow A$ }

g) Is R in BCNF? If not, decompose R into relations in BCNF.

- If not, decompose R into relations in BCNF.
 - Decompose R into R₁(A, B) and R₂(A, C, D)
 - R₁ is in BCNF?
 - $F_1 = \{A \rightarrow B\}$, A is a key in R1, R_1 is in BCNF!
 - $-R_2$ is in BCNF?
 - $F_2 = \{D \rightarrow A\}$, D is not a key in R_2 , R_2 is not in BCNF!
 - We further decompose R_2 into $R_3(A, D)$ and $R_4(C, D)$.
 - $-R_3$ is in BCNF?
 - $F_3 = \{D \rightarrow A\}$, D is a key in R_3 , R_3 is in BCNF!
 - $-R_{\Delta}$ is in BCNF?
 - $F_4 = \{\text{empty}\}, R_4 \text{ is in BCNF!}$
 - Hence, we can decompose R into \mathbf{R}_{1}^{12} , \mathbf{R}_{3} and \mathbf{R}_{4} in BCNF.