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Outcome 1. Information Modeling

Outcome 2. Query Languages

Outcome 3. System Design

Outcome 4. Application Development

Able to understand the modeling of real life information in a database 
system.

Able to understand and use the languages designed for data access.

Able to understand the design of an efficient and reliable database 
system.

Able to implement a practical application on a real database.

Outcome based Learning
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Content
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Important tools in database design.

Functional dependency.

FD closure.

Attribute set closure.



What is FD?

Functional dependency (FD) is a constraint between 
two sets of attributes in a relation from a database .

It requires that the values of a certain set of attributes 
uniquely determine (imply) the values for another set 
of attributes.

X
Determine

attribute set

Y
Dependent 
attribute set

t1[X] = t2[X]    t1[Y] = t2[Y]

X→ Y means that, for 
two tuples t1 and t2, if 
their values in X are 
the same, then their 
values in Y are also the 
same.
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What is FD?

Given a relation R, a set of attributes X in R is said 
to functionally determine another attribute Y, also 
in R, (written X → Y) if, and only if, each X value is 
associated with precisely one Y value.

{employee_id} → {name, phone}
Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

Important concept:
Primary key is just one of the FDs, 
we can have other FD constraints in 
the design of a database.
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What is FD?

Given a relation R, a set of attributes X in R is said 
to functionally determine another attribute Y, also 
in R, (written X → Y) if, and only if, each X value is 
associated with precisely one Y value.

Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

{phone} → {name}

{employee_id} → {name, phone}

In the company, each employee has his/her own phone 
number. 
Therefore, the name attribute is functionally determined by 
the phone attribute. 
Each phone number is associated with precisely one name .6



What is FD?

Given a relation R, a set of attributes X in R is said 
to functionally determine another attribute Y, also 
in R, (written X → Y) if, and only if, each X value is 
associated with precisely one Y value.

{phone} → {name}

{name} → {phone}

Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

Question
Can you understand 
why this FD is not 
true?

{employee_id} → {name, phone}
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What is FD?

Functional dependency is useful in database design.

We can use FD to test if a database instance is legal.

We can specify constraints on the legality of relation.
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It can help us design a better database (less redundancy) 



Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

A

1

1

3

4

4

B

5

4

4

2

1

To check if A→ B is satisfied in R, we have to check if 
the following condition is satisfied…
For all tuples in the instance, if their values in A are 
the same, then their corresponding values in B have 
to be the same.

A→ B is NOT true.
Reason:
These two tuples have the same 
value in A, but their values in B
are not the same.
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Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

B

5

4

4

2

1

C

2

3

3

4

4

To check if B→ C is satisfied in R, we have to check if 
the following condition is satisfied…
For all tuples in the instance, if their values in B are 
the same, then their corresponding values in C have 
to be the same.

B→ C is true!
Notice:
It is fine if two tuples have 
different B values and have the 
same C value.
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Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

C

2

3

3

4

4

D

5

2

2

1

1

To check if C→ D is satisfied in R, we have to check if 
the following condition is satisfied…
For all tuples in the instance, if their values in C are 
the same, then their corresponding values in D have 
to be the same.

11



Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

AB → A

A

1

1

3

4

4

A B

1 5

1 4

3 4

4 2

4 1

1. Reflexivity - if   , then → .

Some FDs can be derived by rules.
Therefore we have the 
Armstrong’s Axioms…

1. Reflexivity: If RHS is a subset 
of LHS, then the FD must be true.

Obvious! This FD is 
ALWAYS TRUE!
Reason:
If two tuples have the 
same values on AB, then 
their A values must be the 
same!
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Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

AB → A

B → D

D

5

2

2

1

1

B

5

4

4

2

1

1. Reflexivity - if   , then → .

Again, this is obvious! Since B → C is true, and C → D is true.
This means that 
1) if two tuples have the same B values, their C values must be the same.
2) if their C values are the same, their D values must be the same.
Therefore, B → D. 

2. Transitivity - if →  and → , then → .

C

2

3

3

4

4

→ →
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Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C

C → D

AB → A

B → D

1. Reflexivity - if   , then → .

Obvious! 
Given B → D is true, 
we can derive that  
AB → AD is true!

2. Transitivity - if →  and → , then → .

A B

1 5

1 4

3 4

4 2

4 1

A D

1 5

1 2

3 2

4 1

4 1

Observation
Since A appears on both sides of the 
FD, whether the tuple values are the 
same will not be determined by A.

3. Augmentation - if → , then  → .
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Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C AC → CE

C → D A → E

AB → A

B → D

1. Reflexivity - if   , then → .

IMPORTANT!!
Although AC → CE is true, 
can we derive A → E
by augmentation? 

2. Transitivity - if →  and → , then → .
3. Augmentation - if → , then  → .

A C

1 2

1 3

3 3

4 4

4 4

C E

2 4

3 3

3 2

4 4

4 4

Think in this way…
We cannot derived a tighter FD from a looser FD. 
If we compare the tuples in AC and in A, there will 
be less tuples with the same values in AC than A.
Therefore, A → E is a tighter FD than AC → CE. 

NO!!
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Armstrong’s Axioms

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

We now have 3 basic axioms.

New FDs can be derived (proved) using these axioms.
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Question 1

Prove, by Armstrong’s axioms only, the following FDs 
are true.  

Given a set of functional dependencies 

F={ A→B, B→C, DE→A }.

a) A → C.

b) AD →B.

c) DE →ABC.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms
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Question 1a

Given a set of functional dependencies 

Prove, A→C is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
Since the target FD starts from 
A (i.e. A→C), let see if we can 
find any existing FDs with LHS as 
A to start our prove.
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Question 1a

Given a set of functional dependencies 

Prove, A→C is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
Now we choose A→B to start our prove.
Can we show that B→C is true 
such that we can prove A→C by
Transitivity?

B→C is true according to 
the problem definition!
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Question 1a

Given a set of functional dependencies 

Prove, A→C is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B and B→C, A→C (by Transitivity)
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Question 1

Prove, by Armstrong’s axioms only, the following FDs 
are true.  

Given a set of functional dependencies 

F={ A→B, B→C, DE→A }.

a) A → C.

b) AD →B.

c) DE →ABC.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms
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Question 1b

Given a set of functional dependencies 

Prove, AD →B is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
We have A→B, can we make it AD→sth?

We have AD→BD , can we have BD→B?

So we now have AD→BD and BD→B, so AD →B by 
transitivity !!!

If A→B, then AD→BD (by Augmentation)

BD→B is always true because of Reflexivity!
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Question 1b

Given a set of functional dependencies 

Prove, AD →B is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B, AD→BD (by Augmentation)

Since B  BD, BD→B (by Reflexivity)

Since AD→BD and BD→B, AD→B (by Transitivity)

Please give the formal prove.
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Question 1c

Given a set of functional dependencies 

Prove, DE →ABC is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
We have DE→A, can we show that A→ABC?

Can we show that AB→ABC?

So we now have : DE→A, A→AB , AB→ABC , done ☺ !!!

Since B→C, AB→ABC (by Augmentation)

We have A→B, and therefore A→AB (by Augmentation)
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Question 1c

Given a set of functional dependencies 

Prove, DE →ABC is true.  

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B, A→AB (by Augmentation)

Since B→C, AB→ABC (by Augmentation)

Since A→AB and AB→ABC, A→ABC (by Transitivity)

Since DE→A and A→ABC, DE→ABC (by Transitivity)

Please give the formal prove.
25



Armstrong’s Axioms

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

3 basic axioms.

3 more axioms to help easier prove!

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.
26



Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C AC → CE

C → D A → E

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
If B → C, then B → BC is also true (by augmentation)
If B → D, then BC → CD is also true (by augmentation)
Therefore, with B → BC and BC → CD , 
B → CD is also true (by transitivity).
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Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD AC → C

B → C AC → CE AC → E

C → D A → E

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
CE → C and CE → E are always true (by reflexivity)
Therefore, given AC → CE, 
AC → C and AC → E are also true (by transitivity).

5. Decomposition - if → , then →  and → .
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Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD AC → C

B → C AC → CE AC → E

C → D A → E AB → CE

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
If B → C, then AB → AC is true (by augmentation)
Therefore, given AC → CE, 
AB → CE is also true (by transitivity).

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.
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Question 2

Derive the following rules 
with Armstrong’s axioms 
and the additional rules.

a) If A→E, A→D and E→B then A→BD.

b) If M→J and JY→RC then MY→R.

c) If L→IJ and J→KH then L→KH.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.
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Question 2a

Derive the following rules 
with Armstrong’s axioms 
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if A→E, A→D and E→B then A→BD.

Since A→E and E→B, A→B (by Transitivity)

Since A→B and A→D, A→BD (by Union)
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Question 2b

Derive the following rules 
with Armstrong’s axioms 
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if M→J and JY→RC then MY→R.

Since M→J and JY→RC, MY→RC (by Pseudo-transitivity)

Since MY→RC, MY→R (by Decomposition)
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Question 2c

Derive the following rules 
with Armstrong’s axioms 
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if L→IJ and J→KH then L→KH.

Since L→IJ, L→I and L→J (by Decomposition)

Since L→J and J→KH , L→KH (by Transitivity)
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Attribute

set closure



Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as  α+) is the set of 
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

1. A→A is always true (by Reflexivity).

2. A→ B is given in F.

3. A→ C is derived from F:
Given A→ B and B→ C, A→ C is also true (by Transitivity).

= { A, B, C }{A}+
Attribute set 
closure of A. A, B , C
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Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as  α+) is the set of 
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

{B}+= { B, C }

{C}+= { C }

{A,B}+= { A, B, C }

Note that we only 
consider single 
attribute, not attribute 
sets (so we do not 
have AB, ABC, AC…etc 
in {A,B}+).

= { A, B, C }{A}+
Attribute set 
closure of A. A, B , C
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Computing α+

Simply speaking, we apply the Transitivity rule again 
and again to find all the attributes that are 
functionally determined by α.

result = α.
while (changes to result ){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ.
}

}
} The attribute_closure() algorithm
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Computing α+

result = α
while (changes to result ){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

The reflexivity rule states that 
A→ A must be true.

Reflexivity rule

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the 
attribute_closure() algorithm

result = { A }
Output of the 

attribute_closure() algorithm
38



Computing α+

result = α
while (changes to result ){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

We find the attributes that can be 
functionally determined by A, so 
we search for the rules in the 
format A→ sth.

Transitivity rule

result = { A }

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the 
attribute_closure() algorithm

Output of the 
attribute_closure() algorithm
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Computing α+

result = α
while (changes to result ){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

Since A→ B is in F, we know that B 
is functionally determined by A. 

Discover B

result = { A, B }

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the 
attribute_closure() algorithm

Output of the 
attribute_closure() algorithm
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Computing α+

result = α
while (changes to result ){

for each β → γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

In the next iteration, we consider 
the set of FDs in the format 
B → sth.

Repeat until no more change

result = { A, B, C }

Therefore, {A}+ = {A, B, C}.

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the 
attribute_closure() algorithm

Output of the 
attribute_closure() algorithm
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Use of α+

Testing for superkey: α is a super key of R iff α+

contains all attributes of R.

Check if the decomposition of a relation is 
dependency preserving or not.

Calculate FD closure F+, which is an important tool in 
database normalization (e.g., The Boyce-Codd 
normal form BCNF.) 

What is FD 
closure F+?
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Question 3

Given a relation R(A, B, C, D, E) and functional 
dependencies F={C→D, AC→BE, D→A}. 
Prove that C is a candidate key of R.

Hints: 
To prove C is a candidate key of R, we need to:
1) Prove that C is a superkey. (How? Answer in the previous slide.)

2) Prove that C is minimum (no subset of C is a superkey).

Ok! First I need to show that {C}+ = {A,B,C,D,E}.
This implies ALL attributes are functionally 
determined by C, which means C is a superkey.
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Question 3

Given a relation R(A, B, C, D, E) and functional 
dependencies F={C→D, AC→BE, D→A}. 
Prove that C is a candidate key of R.

If the answers to all 
these questions are 
YES, then C is a 
superkey.

This is essentially 
asking if C→A is true 
or not, so we have 
the prove the FD 
C→A here.

{C}+ contains A ?

{C}+ contains B ?

{C}+ contains C ?

{C}+ contains D ?

{C}+ contains E ?

Since C→D and D→A, C→A (by Transitivity)
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Question 3

Given a relation R(A, B, C, D, E) and functional 
dependencies F={C→D, AC→BE, D→A}. 
Prove that C is a candidate key of R.

{C}+ contains A ?

{C}+ contains B ?

{C}+ contains C ?

{C}+ contains D ?

{C}+ contains E ?

Finally, since {C}+

contains all 
attributes of R, C is a 
superkey of R.
C is a single 
attribute, it is a 
candidate key.

Since C→D and D→A, C→A (by Transitivity)

Since C→A, C→AC (by Augmentation)

Since C→AC and AC→BE, C→BE (by Transitivity)

Since C→BE, C→B (by Decomposition)

Since C→D, {C}+ contains D.

Since C→BE, C→E (by Decomposition) 45
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FD closure F+

The set of ALL functional dependencies that can be
logically implied by F is called the closure of F (or F+)

To compute F+ in a relation R:

Step 1. Treat every subset of R as α.
Step 2. For every α, compute α+.
Step 3. Use α as LHS, and generate an FD for every 
subset of α+ on RHS.

The fd_closure() algorithm

This is the attribute 
set closure.
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Question 4

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

N S P NS NP SP NSP

Step 1. Treat every subset of R as α.
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Question 4

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Step 2. For every α, compute α+.

Attribute 
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP
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Question 4

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 2. For every α, compute α+.
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Question 4

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 3. Use α as LHS, and generate an FD 
for every subset of α+ on RHS.

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP
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Question 4

Given a relation R(N, S, P) and the functional 
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute 
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP

S→S P→P NS→N

NS→S

NS→P

NS→NS

NS→NP

NS→SP

NS→NSP

NP→N

NP→S

NP→P

NP→NS

NP→NP

NP→SP

NP→NSP

NSP→N

NSP→S

NSP→P

NSP→NS

NSP→NP

NSP→SP

NSP→NSP

SP→S

SP→P

SP→SP
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Summary 

The following concepts will be used in the 
discussions of database normalization

Functional dependency.

FD closure.

Attribute set closure.

We would like to achieve the followings when we 
design the database schema

No information loss

No redundancy 

Preserve functional dependencies in individual relations
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