
Lecture 8

Database Design:

Functional Dependency

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A
Introduction to Database Management Systems

Acknowledgement: Dr. Chui Chun Kit

Outcome 1. Information Modeling

Outcome 2. Query Languages

Outcome 3. System Design

Outcome 4. Application Development

Able to understand the modeling of real life information in a database
system.

Able to understand and use the languages designed for data access.

Able to understand the design of an efficient and reliable database
system.

Able to implement a practical application on a real database.

Outcome based Learning

2

Content

3

Important tools in database design.

Functional dependency.

FD closure.

Attribute set closure.

What is FD?

Functional dependency (FD) is a constraint between
two sets of attributes in a relation from a database .

It requires that the values of a certain set of attributes
uniquely determine (imply) the values for another set
of attributes.

X
Determine

attribute set

Y
Dependent
attribute set

t1[X] = t2[X]  t1[Y] = t2[Y]

X→ Y means that, for
two tuples t1 and t2, if
their values in X are
the same, then their
values in Y are also the
same.

4

What is FD?

Given a relation R, a set of attributes X in R is said
to functionally determine another attribute Y, also
in R, (written X → Y) if, and only if, each X value is
associated with precisely one Y value.

{employee_id} → {name, phone}
Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

Important concept:
Primary key is just one of the FDs,
we can have other FD constraints in
the design of a database.

5

What is FD?

Given a relation R, a set of attributes X in R is said
to functionally determine another attribute Y, also
in R, (written X → Y) if, and only if, each X value is
associated with precisely one Y value.

Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

{phone} → {name}

{employee_id} → {name, phone}

In the company, each employee has his/her own phone
number.
Therefore, the name attribute is functionally determined by
the phone attribute.
Each phone number is associated with precisely one name .6

What is FD?

Given a relation R, a set of attributes X in R is said
to functionally determine another attribute Y, also
in R, (written X → Y) if, and only if, each X value is
associated with precisely one Y value.

{phone} → {name}

{name} → {phone}

Employees

employee_id name phone

1 Jones 62225214

2 Smith 64459574

3 Parker 35564872

4 Smith 28975152

Question
Can you understand
why this FD is not
true?

{employee_id} → {name, phone}

7

What is FD?

Functional dependency is useful in database design.

We can use FD to test if a database instance is legal.

We can specify constraints on the legality of relation.

8

It can help us design a better database (less redundancy)

Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

A

1

1

3

4

4

B

5

4

4

2

1

To check if A→ B is satisfied in R, we have to check if
the following condition is satisfied…
For all tuples in the instance, if their values in A are
the same, then their corresponding values in B have
to be the same.

A→ B is NOT true.
Reason:
These two tuples have the same
value in A, but their values in B
are not the same.

9

Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

B

5

4

4

2

1

C

2

3

3

4

4

To check if B→ C is satisfied in R, we have to check if
the following condition is satisfied…
For all tuples in the instance, if their values in B are
the same, then their corresponding values in C have
to be the same.

B→ C is true!
Notice:
It is fine if two tuples have
different B values and have the
same C value.

10

Toy Example

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

C

2

3

3

4

4

D

5

2

2

1

1

To check if C→ D is satisfied in R, we have to check if
the following condition is satisfied…
For all tuples in the instance, if their values in C are
the same, then their corresponding values in D have
to be the same.

11

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

AB → A

A

1

1

3

4

4

A B

1 5

1 4

3 4

4 2

4 1

1. Reflexivity - if   , then → .

Some FDs can be derived by rules.
Therefore we have the
Armstrong’s Axioms…

1. Reflexivity: If RHS is a subset
of LHS, then the FD must be true.

Obvious! This FD is
ALWAYS TRUE!
Reason:
If two tuples have the
same values on AB, then
their A values must be the
same!

12

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B

B → C

C → D

AB → A

B → D

D

5

2

2

1

1

B

5

4

4

2

1

1. Reflexivity - if   , then → .

Again, this is obvious! Since B → C is true, and C → D is true.
This means that
1) if two tuples have the same B values, their C values must be the same.
2) if their C values are the same, their D values must be the same.
Therefore, B → D.

2. Transitivity - if →  and → , then → .

C

2

3

3

4

4

→ →

13

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C

C → D

AB → A

B → D

1. Reflexivity - if   , then → .

Obvious!
Given B → D is true,
we can derive that
AB → AD is true!

2. Transitivity - if →  and → , then → .

A B

1 5

1 4

3 4

4 2

4 1

A D

1 5

1 2

3 2

4 1

4 1

Observation
Since A appears on both sides of the
FD, whether the tuple values are the
same will not be determined by A.

3. Augmentation - if → , then  → .

14

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C AC → CE

C → D A → E

AB → A

B → D

1. Reflexivity - if   , then → .

IMPORTANT!!
Although AC → CE is true,
can we derive A → E
by augmentation?

2. Transitivity - if →  and → , then → .
3. Augmentation - if → , then  → .

A C

1 2

1 3

3 3

4 4

4 4

C E

2 4

3 3

3 2

4 4

4 4

Think in this way…
We cannot derived a tighter FD from a looser FD.
If we compare the tuples in AC and in A, there will
be less tuples with the same values in AC than A.
Therefore, A → E is a tighter FD than AC → CE.

NO!!
15

Armstrong’s Axioms

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

We now have 3 basic axioms.

New FDs can be derived (proved) using these axioms.

16

Question 1

Prove, by Armstrong’s axioms only, the following FDs
are true.

Given a set of functional dependencies

F={ A→B, B→C, DE→A }.

a) A → C.

b) AD →B.

c) DE →ABC.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

17

Question 1a

Given a set of functional dependencies

Prove, A→C is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
Since the target FD starts from
A (i.e. A→C), let see if we can
find any existing FDs with LHS as
A to start our prove.

18

Question 1a

Given a set of functional dependencies

Prove, A→C is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
Now we choose A→B to start our prove.
Can we show that B→C is true
such that we can prove A→C by
Transitivity?

B→C is true according to
the problem definition!

19

Question 1a

Given a set of functional dependencies

Prove, A→C is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B and B→C, A→C (by Transitivity)

20

Question 1

Prove, by Armstrong’s axioms only, the following FDs
are true.

Given a set of functional dependencies

F={ A→B, B→C, DE→A }.

a) A → C.

b) AD →B.

c) DE →ABC.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

21

Question 1b

Given a set of functional dependencies

Prove, AD →B is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
We have A→B, can we make it AD→sth?

We have AD→BD , can we have BD→B?

So we now have AD→BD and BD→B, so AD →B by
transitivity !!!

If A→B, then AD→BD (by Augmentation)

BD→B is always true because of Reflexivity!

22

Question 1b

Given a set of functional dependencies

Prove, AD →B is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B, AD→BD (by Augmentation)

Since B  BD, BD→B (by Reflexivity)

Since AD→BD and BD→B, AD→B (by Transitivity)

Please give the formal prove.
23

Question 1c

Given a set of functional dependencies

Prove, DE →ABC is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Think in this way…
We have DE→A, can we show that A→ABC?

Can we show that AB→ABC?

So we now have : DE→A, A→AB , AB→ABC , done ☺ !!!

Since B→C, AB→ABC (by Augmentation)

We have A→B, and therefore A→AB (by Augmentation)

24

Question 1c

Given a set of functional dependencies

Prove, DE →ABC is true.

F={ A→B, B→C, DE→A }.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

Since A→B, A→AB (by Augmentation)

Since B→C, AB→ABC (by Augmentation)

Since A→AB and AB→ABC, A→ABC (by Transitivity)

Since DE→A and A→ABC, DE→ABC (by Transitivity)

Please give the formal prove.
25

Armstrong’s Axioms

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

3 basic axioms.

3 more axioms to help easier prove!

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.
26

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD

B → C AC → CE

C → D A → E

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
If B → C, then B → BC is also true (by augmentation)
If B → D, then BC → CD is also true (by augmentation)
Therefore, with B → BC and BC → CD ,
B → CD is also true (by transitivity).

27

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD AC → C

B → C AC → CE AC → E

C → D A → E

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
CE → C and CE → E are always true (by reflexivity)
Therefore, given AC → CE,
AC → C and AC → E are also true (by transitivity).

5. Decomposition - if → , then →  and → .

28

Armstrong’s Axioms

A B C D E

1 5 2 5 4

1 4 3 2 3

3 4 3 2 2

4 2 4 1 4

4 1 4 1 4

R
A → B AB → AD AC → C

B → C AC → CE AC → E

C → D A → E AB → CE

AB → A B → CD

B → D

4. Union - if →  and → , then → .

Think in this way…
If B → C, then AB → AC is true (by augmentation)
Therefore, given AC → CE,
AB → CE is also true (by transitivity).

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

29

Question 2

Derive the following rules
with Armstrong’s axioms
and the additional rules.

a) If A→E, A→D and E→B then A→BD.

b) If M→J and JY→RC then MY→R.

c) If L→IJ and J→KH then L→KH.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

30

Question 2a

Derive the following rules
with Armstrong’s axioms
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if A→E, A→D and E→B then A→BD.

Since A→E and E→B, A→B (by Transitivity)

Since A→B and A→D, A→BD (by Union)

31

Question 2b

Derive the following rules
with Armstrong’s axioms
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if M→J and JY→RC then MY→R.

Since M→J and JY→RC, MY→RC (by Pseudo-transitivity)

Since MY→RC, MY→R (by Decomposition)

32

Question 2c

Derive the following rules
with Armstrong’s axioms
and the additional rules.

1. Reflexivity - if   , then → .

2. Transitivity - if →  and → , then → .

3. Augmentation - if → , then  → .

Armstrong’s axioms

4. Union - if →  and → , then → .

5. Decomposition - if → , then →  and → .

6. Pseudo-transitivity - if →  and →, then →.

Prove, if L→IJ and J→KH then L→KH.

Since L→IJ, L→I and L→J (by Decomposition)

Since L→J and J→KH , L→KH (by Transitivity)

33

Attribute

set closure

Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as α+) is the set of
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

1. A→A is always true (by Reflexivity).

2. A→ B is given in F.

3. A→ C is derived from F:
Given A→ B and B→ C, A→ C is also true (by Transitivity).

= { A, B, C }{A}+
Attribute set
closure of A. A, B , C

35

Attribute set closure α+

Given a set F of FDs and a set of attributes α.

The closure of α (denoted as α+) is the set of
attributes that can be functionally determined by α.

F = {A→ B, B→ C}

{B}+= { B, C }

{C}+= { C }

{A,B}+= { A, B, C }

Note that we only
consider single
attribute, not attribute
sets (so we do not
have AB, ABC, AC…etc
in {A,B}+).

= { A, B, C }{A}+
Attribute set
closure of A. A, B , C

36

Computing α+

Simply speaking, we apply the Transitivity rule again
and again to find all the attributes that are
functionally determined by α.

result = α.
while (changes to result){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ.
}

}
} The attribute_closure() algorithm

37

Computing α+

result = α
while (changes to result){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

The reflexivity rule states that
A→ A must be true.

Reflexivity rule

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the
attribute_closure() algorithm

result = { A }
Output of the

attribute_closure() algorithm
38

Computing α+

result = α
while (changes to result){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

We find the attributes that can be
functionally determined by A, so
we search for the rules in the
format A→ sth.

Transitivity rule

result = { A }

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the
attribute_closure() algorithm

Output of the
attribute_closure() algorithm

39

Computing α+

result = α
while (changes to result){

for each β→ γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

Since A→ B is in F, we know that B
is functionally determined by A.

Discover B

result = { A, B }

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the
attribute_closure() algorithm

Output of the
attribute_closure() algorithm

40

Computing α+

result = α
while (changes to result){

for each β → γ in F {
if (β ⊆ result){

result = result ∪ γ
}

}
}

In the next iteration, we consider
the set of FDs in the format
B → sth.

Repeat until no more change

result = { A, B, C }

Therefore, {A}+ = {A, B, C}.

The attribute_closure() algorithm

α = A
F = {A→ B, B→ C}

Input to the
attribute_closure() algorithm

Output of the
attribute_closure() algorithm

41

Use of α+

Testing for superkey: α is a super key of R iff α+

contains all attributes of R.

Check if the decomposition of a relation is
dependency preserving or not.

Calculate FD closure F+, which is an important tool in
database normalization (e.g., The Boyce-Codd
normal form BCNF.)

What is FD
closure F+?

42

Question 3

Given a relation R(A, B, C, D, E) and functional
dependencies F={C→D, AC→BE, D→A}.
Prove that C is a candidate key of R.

Hints:
To prove C is a candidate key of R, we need to:
1) Prove that C is a superkey. (How? Answer in the previous slide.)

2) Prove that C is minimum (no subset of C is a superkey).

Ok! First I need to show that {C}+ = {A,B,C,D,E}.
This implies ALL attributes are functionally
determined by C, which means C is a superkey.

43

Question 3

Given a relation R(A, B, C, D, E) and functional
dependencies F={C→D, AC→BE, D→A}.
Prove that C is a candidate key of R.

If the answers to all
these questions are
YES, then C is a
superkey.

This is essentially
asking if C→A is true
or not, so we have
the prove the FD
C→A here.

{C}+ contains A ?

{C}+ contains B ?

{C}+ contains C ?

{C}+ contains D ?

{C}+ contains E ?

Since C→D and D→A, C→A (by Transitivity)

44

Question 3

Given a relation R(A, B, C, D, E) and functional
dependencies F={C→D, AC→BE, D→A}.
Prove that C is a candidate key of R.

{C}+ contains A ?

{C}+ contains B ?

{C}+ contains C ?

{C}+ contains D ?

{C}+ contains E ?

Finally, since {C}+

contains all
attributes of R, C is a
superkey of R.
C is a single
attribute, it is a
candidate key.

Since C→D and D→A, C→A (by Transitivity)

Since C→A, C→AC (by Augmentation)

Since C→AC and AC→BE, C→BE (by Transitivity)

Since C→BE, C→B (by Decomposition)

Since C→D, {C}+ contains D.

Since C→BE, C→E (by Decomposition) 45

FD closure

FD closure F+

The set of ALL functional dependencies that can be
logically implied by F is called the closure of F (or F+)

To compute F+ in a relation R:

Step 1. Treat every subset of R as α.
Step 2. For every α, compute α+.
Step 3. Use α as LHS, and generate an FD for every
subset of α+ on RHS.

The fd_closure() algorithm

This is the attribute
set closure.

47

Question 4

Given a relation R(N, S, P) and the functional
dependencies F = {N→S, N→P} find the FD closure F+.

N S P NS NP SP NSP

Step 1. Treat every subset of R as α.

48

Question 4

Given a relation R(N, S, P) and the functional
dependencies F = {N→S, N→P} find the FD closure F+.

Step 2. For every α, compute α+.

Attribute
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP

49

Question 4

Given a relation R(N, S, P) and the functional
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute
set closure

1. result = {N}

To find the attribute set closure {N}, use the attribute_closure() algorithm

2. Consider the FDs with N→S, N→P, add S and P into result.

3. result = {N,S,P}

{N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 2. For every α, compute α+.

50

Question 4

Given a relation R(N, S, P) and the functional
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

Step 3. Use α as LHS, and generate an FD
for every subset of α+ on RHS.

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP

51

Question 4

Given a relation R(N, S, P) and the functional
dependencies F = {N→S, N→P} find the FD closure F+.

Attribute
set closure {N,S,P}

N S P NS NP SP NSP

{S} {P} {S,P} {N,S,P}{N,S,P} {N,S,P}

FD

N→N

N→S

N→P

N→NS

N→NP

N→SP

N→NSP

S→S P→P NS→N

NS→S

NS→P

NS→NS

NS→NP

NS→SP

NS→NSP

NP→N

NP→S

NP→P

NP→NS

NP→NP

NP→SP

NP→NSP

NSP→N

NSP→S

NSP→P

NSP→NS

NSP→NP

NSP→SP

NSP→NSP

SP→S

SP→P

SP→SP

52

Summary

The following concepts will be used in the
discussions of database normalization

Functional dependency.

FD closure.

Attribute set closure.

We would like to achieve the followings when we
design the database schema

No information loss

No redundancy

Preserve functional dependencies in individual relations
53

END

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A
Introduction to Database Management Systems

