
Banking example

1

Let's consider the banking enterprise example we
used in the previous chapter.

branch_id

branch loan
loan-

branch

name

asset
loan_idamount

account-
branch borrower

customeraccount depositor

account_id

balance

customer_id

name

address

Banking example

2

customer_id loan_id

C1 L3

C4 L2

C2 L1

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

customer_id

C1

C2

C2

C4

C4

Account CustomerDepositor

BorrowerLoanBranch

account_id

A1

A1

A2

A3

A4

branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

customer_id

C1

C2

C3

C4

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Foreign key Foreign key

Foreign
key

Foreign key
Foreign

key

Foreign
key

Question 1

Query: find the customer_id of all customers who
have an account at a branch located in Central.

Relational expression customer_id(
branch.location = “Central”(

branch ⋈(account ⋈ depositor)
)

)

3

location asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

branch
branch_id

B1

B2

B3

B4

account

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

customer_id

C1

C2

C2

C4

C4

depositor
account_id

A1

A1

A2

A3

A4

SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = “Central”

SQL

Relational algebra expression

Question 1

Query: find the customer_id of all customers who
have an account at a branch located in Central.

Relational expression customer_id(
branch.location = “Central”(

branch ⋈(account ⋈ depositor)
)

)

Note that we can transform the relational
expression by using the equivalence rules.
E.g., Performing selection as early as possible
reduces the size of the relation to be joined.

4

Question 1

We can reduce the size of temporary relation by
transforming the expression according to using rule 5a.

customer_id(
branch.location = “Central”(

branch ⋈(account ⋈ depositor)
)

)

customer_id(
(branch.location =“Central” (branch)) ⋈ (account ⋈ depositor)

)

Rule 5a. The selection
operation distributes
over the natural join
operation when all the
attributes in selection
condition involve only
the attributes of one of
the expressions (say, E1)
being joined.

σp (E1⋈ E2) = (σp (E1) ⋈ E2)

5

Question 2a

Find the customer_id of all customers with an account
at Central branch whose account balance is over $1000

Relational expression

customer_id (
branch.location = “Central”  balance > 1000 (

branch ⋈ (account ⋈ depositor)
)

)

6

location asset

Central 7100000
Causeway Bay 9000000
Aberdeen 400000
North Point 3700000

branch
branch_id

B1
B2
B3
B4

account
branch_id

B1
B2
B2
B1

balance

5000
4000
900
700

account_id

A1
A2
A3
A4

customer_id

C1
C2
C2
C4
C4

depositor
account_id

A1
A1
A2
A3
A4

SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = “Central” AND balance > 1000

SQL

Question 2b

Transform the expression in question 2a to another
equivalent expression with smaller temporary relation

Rule 4. Natural join operations are associative.

(E1⋈ E2)⋈ E3 = E1⋈ (E2 ⋈ E3)

customer_id (
branch.location = “Central”  balance > 1000 (

(branch ⋈ account) ⋈ depositor
)

)

customer_id (
branch.location = “Central”  balance > 1000 (

branch ⋈ (account ⋈ depositor)
)

)

7

As branch.location and balance are attributes of the branch and account relations,
we would like to make them on one side of the natural join (the one pointed by the
pointer) so that we can apply rules to push the selection down the natural join.

customer_id (
(branch.location = “Central”  balance > 1000 (branch ⋈ account))
⋈ depositor

)

Question 2b

Perform selection early

Rule 5a. The selection operation distributes over the natural
join operation when all the attributes in selection condition
involve only the attributes of one of the expressions (say, E1)
being joined.

customer_id (
branch.location = “Central”  balance > 1000 (

(branch ⋈ account) ⋈ depositor
)

)

8

Now the selection predicates are all on the
attributes of branch and account relations,
i.e., on the L.H.S. of the natural join (the one
pointed by the pointer), we can push the
selection down the L.H.S. of that natural join.

Question 2b

Perform selection early

customer_id (
(branch.location = “Central” (branch) ⋈  balance > 1000 (account))
⋈ depositor

)

Rule 5b. The selection distributes over natural join when
selection condition p1 involves only the attributes of E1 and p2
involves only the attributes of E2.

σp1  p2(E1⋈ E2) = (σp1 (E1) ⋈ σp2 (E2))

customer_id (
(branch.location = “Central”  balance > 1000 (branch ⋈ account))
⋈ depositor

) 9

We can further push
the selection
predicates down the
natural join between
branch and account.

Question 2b

Perform projection early

customer_id (
account_id(

branch.location = “Central” (branch) ⋈  balance > 1000 (account)
)
⋈customer_id, account_id (depositor)

)

Rule 6. The projection operation can distribute over the
natural join operation.

customer_id (
(branch.location = “Central” (branch) ⋈  balance > 1000 (account))
⋈ depositor

)

10

When pushing customer_id down
the natural join (the one
pointed by pointer), we need to
add the attribute that is used in
the joining (i.e., account_id).

πL1  L2 (E1⋈ E2) = πL1  L2 ((πL1  L3 (E1)) ⋈ (πL2  L3 (E2)))

Question 2b

Perform projection early

customer_id (
account_id(

branch_id(
branch.location = “Central” (branch)

)
⋈
account_id ,branch_id(

 balance > 1000 (account)
)

)
⋈
customer_id, account_id (depositor)

)

customer_id (
account_id(

branch.location = “Central” (branch) ⋈  balance > 1000 (account)
)
⋈customer_id, account_id (depositor)

) 11

When pushing account_id

down the natural join
(the one pointed by
pointer), we need to
add the attribute that is
used in the joining (i.e.,
branch_id).

Question 3

Find the sID and name of the employee who know all
the IT skills in the company.

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

sID, name(
((Has)  skillID(IT_skill))
⋈
Staff

)

The use of division to find the sID
in Has that has all skillID appearing
in IT_skill table.

(Has)  skillID(IT_skill)

sID

1
4

12

Question 3

Find the sID and name of the employee who know all
the IT skills in the company.

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

sID, name(
((Has)  skillID(IT_skill))
⋈
Staff

)

(Has)  skillID(IT_skill)

sID

1
4

sID name

1 Peter
4 Joe

With the sID, we join with Staff and
project the sID and name of the
staffs.

13

sID, name(((Has)  skillID(IT_skill)) ⋈ Staff)

Question 4

Find the sID of the staffs who know about C++ or
works in the IT department (dpt_id=2).

(
sID(Has ⋈ skillName= “C++”(IT_skill))


sID(dpt_id= 2(Staff))
)

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

Given the skillName as “C++”, find
the sID of the staffs who has this
skill.

Find the sID of the staffs who
works in the IT department.

sID

1
4

sID

3

sID(Has ⋈ skillName= “C++”(IT_skill))

sID(dpt_id= 2(Staff))

14

Question 5

List the name of the IT skills that the staffs named
“Peter” and “David” know.

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3
5 David 4

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

sID name skillName

1 Peter C++

1 Peter JAVA
1 Peter MySQL

database
3 David MySQL

database
5 David null

Result

15

Question 5

List the name of the IT skills that the staffs named
“Peter” and “David” know.

sID, name, skillName(
(name= “Peter” v name =“David” (Staff)

⋈ Has)

⋈ IT skill

)

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3
5 David 4

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

Select the Staffs with name equal
to “Peter” or “David”.

sID name dpt_id

1 Peter 1
3 David 2
5 David 4

name= “Peter” v name =“David” (Staff)

16

Question 5

List the name of the IT skills that the staffs named
“Peter” and “David” know.

sID, name, skillName(
(name= “Peter” v name =“David” (Staff)

⋈ Has)

⋈ IT skill

)

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3
5 David 4

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

Use left outer join to retain the
staff “David” (sID = 5) who knows
no IT_skills.

sID name dpt_id

1 Peter 1
3 David 2
5 David 4

name= “Peter” v name =“David” (Staff)

name= “Peter” v name =“David” (Staff) ⋈Has

sID name dpt_id skillID

1 Peter 1 1

1 Peter 1 2
1 Peter 1 3
3 David 2 3
5 David 4 null

17

Question 5

List the name of the IT skills that the staffs named
“Peter” and “David” know.

sID, name, skillName(
(name= “Peter” v name =“David” (Staff)

⋈ Has)

⋈ IT_skill

)

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3
5 David 4

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

With skillID, we further join with IT_skill
table to get the name of the skills

sID name dpt_id skillID

1 Peter 1 1

1 Peter 1 2
1 Peter 1 3
3 David 2 3
5 David 4 null

name= “Peter” v name =“David” (Staff) ⋈Has

sID name dpt_id skillID skillName

1 Peter 1 1 C++
1 Peter 1 2 JAVA
1 Peter 1 3 MySQL database
3 David 2 3 MySQL database
5 David 4 null null

name= “Peter” v name =“David” (Staff) ⋈Has ⋈ IT skill

18

Question 5

List the name of the IT skills that the staffs named
“Peter” and “David” know.

sID, name, skillName(
(name= “Peter” v name =“David” (Staff)

⋈ Has)

⋈ IT_skill

)

Has
sID skillID

1 1
1 2

1 3
2 3
3 3
4 1
4 2
4 3

Staff
sID name dpt_id

1 Peter 1
2 Sharon 1

3 David 2
4 Joe 3
5 David 4

IT_skill
skillID skillName desc

1 C++ …
2 JAVA …

3 MySQL
database

…

name= “Peter” v name =“David” (Staff) ⋈Has ⋈ IT skill

sID name dpt_id skillID skillName

1 Peter 1 1 C++
1 Peter 1 2 JAVA
1 Peter 1 3 MySQL database
3 David 2 3 MySQL database
5 David 4 null null

sID name skillName

1 Peter C++

1 Peter JAVA
1 Peter MySQL database
3 David MySQL database
5 David null

Result

19

