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Find the dept. names where employees named Smith 
work.

Works_in
employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Employees
employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

Motivation

DBMS

Query 

processer

SELECT D.name 
FROM Employees E, Works_in W, Departments D 
WHERE E.name = 'Smith'  AND

E.employee_id = W.employee_id AND 
W.department_id = D.department_id;

Departments
department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

How does the DBMS execute 
this SQL query? 
e.g. Join which two tables 
first? 
Which constraint is applied 
first?
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Relational Algebra is similar to normal algebra (as 
in 2+3*x-y), except it uses relations (tables) as 
operand, and a new set of operators.

Relational Algebra
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The inner, lower-level operations of a relational DBMS 
are (or are similar to) relational algebra operations. 

We need to know about relational algebra to 
understand query execution and optimization in a 
relational DBMS.



Basic operators

Section 1



5

Basic operators

Select (σ)

Project (π)

Union ()

Set difference (-)

Cartesian product (×)

That is to say, there 
should be programs (or 
functions) implemented in 
the DBMS for each of 
these relational operators

Rename ()
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σp(R) = { t | t  R  p(t) }

Selection

Example

Consider the relation Author (authorID, name, date of birth)

Select all authors called “May”.

authorID name date of birth

101 May Nov 16

102 Bonnie Jan 15

103 May Jul 11

104 Raymond Apr 30

105 Tiffany Oct 10

Author 
authorID name date of birth

101 May Nov 16

103 May Jul 11

σname=“May”(Author)

SELECT * 
FROM Author
WHERE name = "May";

SQL

σname=“May”(Author)
Relational algebra

Query 

processer
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πA1, A2, …, Ak(R)

Projection

Example
Consider the relation Book (bookID, title, publisher)

Report only the bookID and title of all the books.

bookID title publisher

115 Stuffy doll ABC

116 Angel’s feather MTG

117 Little girl MGH

118 Myr ABC

Book
bookID title

115 Stuffy doll

116 Angel’s feather

117 Little girl

118 Myr

πbookID, title(Book)

A copy of R with only listed attributes A1 to Ak. 

SELECT bookID, title
FROM Book;

SQL

πbookID, title(Book)
Relational algebra

Query 

processer
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The result = relation over the k attributes 𝐴1, 𝐴2, … , 𝐴𝑘
obtained from R by erasing the columns that are not 
listed and eliminating duplicate rows



RS = { t | t  R  t  S }

Union

Example

Find the name of all products in Audio_CD and DVD tables.

R and S must have the same number of attributes 
and attribute data types are compatible.

name #tracks

One Heart 14

Miracle 14

Audio_CD
name length subtitle

Prince of Persia 110 English, Chinese

Villon’s Wife 90 Japanese

Legend is born: Ip Man 90 Chinese

DVD

SELECT name
FROM Audio_CD
UNION
SELECT name
FROM DVD;

SQL

πname (Audio_CD)  πname (DVD)
Relational algebra

Query 

processer
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Union

name #tracks

One Heart 14

Miracle 14

Audio_CD
name length subtitle

Prince of Persia 110 English, Chinese

Villon’s Wife 90 Japanese

Legend is born: Ip Man 90 Chinese

DVD

name

One Heart

Miracle 

πname (Audio_CD)
name

Prince of Persia

Villon’s Wife

Legend is born: Ip Man

πname (DVD)

name

One Heart

Miracle 

Prince of Persia

Villon’s Wife

Legend is born: Ip Man

πname (Audio_CD)  πname (DVD)
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Set difference
R-S = { t | t  R  t  S }

Example
Find the ID of the students who haven’t submitted 
the assignment.

R and S must have the same number of attributes 
and attribute data types are compatible.

student_id assignment_id date

456 1 28/9

789 1 25/9

Submit
student_id name gender major

123 Kit M CS

456 Yvonne F CS

789 Paul M CS

Student

SELECT student_id
FROM Student
EXCEPT
SELECT student_id
FROM Submit;

SQL

πstudent_id(Student)  – π student_id(Submit)
Relational algebra

Query 

processer
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Set difference

student_id assignment_id date

456 1 28/9

789 1 25/9

Submit
student_id name gender major

123 Kit M CS

456 Yvonne F CS

789 Paul M CS

Student

πstudent_id(Student)
student_id

123

456

789

πstudent_id(Submit)

student_id

456

789

πstudent_id(Student)  – π student_id(Submit) 

student_id

123
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Cartesian product
R × S = { t q | t  R  q  S }

Example
Display the date of the tutorials of the course 
“Introduction to Database Management Systems”.

No attributes with a common name in R and S.

tutorial_id course_id date

1 c1119 5/9

1 c0278a 7/9

2 c0278a 15/9

Tutorial
course_id name

c1119 Data Structures and Algorithms

c0278a Introduction to Database Management Systems

Course

SELECT Tutorial.date
FROM Course, Tutorial
WHERE 
Coruse.name=“Introduction to 
Database Management Systems” AND
Course.course_id = Tutorial.course_id;

SQL

πTutorial.date (
σCourse.name=“Introduction to Database Management Systems”( 

σCourse.course_id=Tutorial.course_id” (Course × Tutorial)
)

)
Relational algebra

Query 

processer
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Cartesian product

tutorial_id course_id date

1 c1119 5/9

1 c0278a 7/9

2 c0278a 15/9

Tutorial
course_id name

c1119 Data Structures and Algorithms

c0278a Introduction to Database Management Systems

Course

Course.course_id Course.name Tutorial
.tutorial_id

Tutorial
.course_id

Tutorial
.date

c1119 Data Structures and Algorithms 1 c1119 5/9

c1119 Data Structures and Algorithms 1 c0278a 7/9

c1119 Data Structures and Algorithms 2 c0278a 15/9

c0278a Introduction to Database Management Systems 1 c1119 5/9

c0278a Introduction to Database Management Systems 1 c0278a 7/9

c0278a Introduction to Database Management Systems 2 c0278a 15/9

Course × Tutorial
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Course.course_id Course.name Tutorial
.tutorial_id

Tutorial
.course_id

Tutorial
.date

c1119 Data Structures and Algorithms 1 c1119 5/9

c1119 Data Structures and Algorithms 1 c0278a 7/9

c1119 Data Structures and Algorithms 2 c0278a 15/9

c0278a Introduction to Database Management Systems 1 c1119 5/9

c0278a Introduction to Database Management Systems 1 c0278a 7/9

c0278a Introduction to Database Management Systems 2 c0278a 15/9

Cartesian product

Course × Tutorial

Course.course_id Course.name Tutorial
.tutorial_id

Tutorial
.course_id

Tutorial
.date

c1119 Data Structures and Algorithms 1 c1119 5/9

c0278a Introduction to Database Management Systems 1 c0278a 7/9

c0278a Introduction to Database Management Systems 2 c0278a 15/9

σCourse.course_id=Tutorial.course_id (Course × Tutorial)
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Cartesian product

Course.course_id Course.name Tutorial
.tutorial_id

Tutorial
.course_id

Tutorial
.date

c0278a Introduction to Database Management Systems 1 c0278a 7/9

c0278a Introduction to Database Management Systems 2 c0278a 15/9

σCourse.name=“Introduction to Database Management Systems”( σCourse.course_id=Tutorial.course_id” (Course × Tutorial))

πTutorial.date (
σCourse.name=“Introduction to Database Management Systems”( 

σCourse.course_id=Tutorial.course_id” (Course × Tutorial)
)

)

Tutorial.date

7/9

15/9

Course.course_id Course.name Tutorial
.tutorial_id

Tutorial
.course_id

Tutorial
.date

c1119 Data Structures and Algorithms 1 c1119 5/9

c0278a Introduction to Database Management Systems 1 c0278a 7/9

c0278a Introduction to Database Management Systems 2 c0278a 15/9

σCourse.course_id=Tutorial.course_id (Course × Tutorial)
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Rename
Notation: X(E)

 X (E) returns the expression E under the name X

Rename operator allows us to name and refer to the 
results of relational-algebra expressions

SELECT Tutorial.date
FROM Course, Tutorial
WHERE 
Coruse.name=“Introduction to Database 
Management Systems” AND
Course.course_id = Tutorial.course_id;

SQL

πTutorial.date (
σCourse.name=“Introduction to Database Management Systems”( 

σCourse.course_id=Tutorial.course_id” (Course × Tutorial)
)

)
Relational algebra (Without rename)

SELECT T.date
FROM Course C, Tutorial T
WHERE 
C.name=“Introduction to Database 
Management Systems” AND
C.course_id = T.course_id;

SQL

πT.date (
σC.name=“Introduction to Database Management Systems”( 

σC.course_id=T.course_id” ( C (Course ) ×  T (Tutorial) )
)

)
Relational algebra (With Course rename to C, Tutorial rename to T) 16



Exercises

Section 2



Question 1

Which of the following is (are) valid Relational 
Algebra expression(s)?

Given the following relational schema:

Student (UID, name, age).

Course (CID, title).

Enroll (UID, CID) with UID referencing Student and 
CID referencing Course.

*UID and CID, age are interger; name and title are varchar.

πUID(Student)-πCID(Course)

Course-πUID(Enroll)

The left and right parts 
of Set difference have 
to be comparable
(same number of 
attributes).
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Question 1
Given the following relational schema:

Student (UID, name, age).

Course (CID, title).

Enroll (UID, CID) with UID referencing Student and 
CID referencing Course.

Which of the following is (are) valid Relational 
Algebra expression(s)?

σage<18(Student  Course)

σage<18(πUID, name(Student))

*UID and CID, age are interger; name and title are varchar.

No attribute “age” for selection. 

Student and Course have different 
attributes.
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Question 2

employeeID name start_date

97 May Nov 16, 1997

98 Felix Jun 30, 2003

99 May Sep 18, 2007

100 George Jan 1, 2008

Employee

employeeID name start_date

97 May Nov 16, 1997

98 Felix Jun 30, 2003

99 May Sep 18, 2007

σemployeeID<100(Employee)

employeeID name

97 May

98 Felix

99 May

πname, employeeID(σemployeeID<100(Employee))

employeeID name

97 May

98 Felix

99 May

100 George

πname, employeeID(Employee)

employeeID name

97 May

98 Felix

99 May

σemployeeID<100(πname, employeeID(Employee))

Find the employeeIDs and names of employees 
whose employeeID < 100.

Option 1 Option 2

Which one is better?

SELECT employee_id,name
FROM Employee
WHERE employee_id < 100;

SQL

Query processer Query processer
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Question 3
Find the dept. id(s) where employees named Smith 
work.

Employees Works_in
employee_id name salary

1 Jones 26000

2 Smith 28000

… … …

10000 … …

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

SELECT W.department_id
FROM Employees E, Works_in W 
WHERE E.name = 'Smith' AND

E.employee_id = W.employee_id;

Employees (10000 tuples)

Works_in (5 tuples) 21

π W.department_id (σE.name=“Smith” (σE.employee_id=W.employee_id(E(Employees) × W(Works_in) ) ) )
Option 1



Question 3
Find the dept. id(s) where employees named Smith 
work.

π W.department_id (σE.name=“Smith” (σE.employee_id=W.employee_id(E(Employees) × W(Works_in) ) ) )
Option 1

π W.department_id (σE.employee_id=W.employee_id(σE.name=“Smith” (E(Employees ) ) × W(Works_in )) )

Option 2

Employees Works_in
employee_id name salary

1 Jones 26000

2 Smith 28000

… … …

10000 … …

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1Employees (10000 tuples)

Works_in (5 tuples)

SELECT W.department_id
FROM Employees E, Works_in W 
WHERE E.name = 'Smith' AND

E.employee_id = W.employee_id;
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Banking example

23

customer_id loan_id

C1 L3

C4 L2

C2 L1

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

customer_id

C1

C2

C2

C4

C4

Account CustomerDepositor

BorrowerLoanBranch

account_id

A1

A1

A2

A3

A4

branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount 

900

1500

1000

loan_id

L1

L2

L3

customer_id

C1

C2

C3

C4

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Foreign key Foreign key

Foreign 
key

Foreign key
Foreign 

key

Foreign 
key



Question 4
Find the names of all customers who have a loan, an 
account, or both in a bank.

customer_id (Borrower)   customer_id (Depositor)

SELECT customer_id
FROM Borrower 
UNION
SELECT customer_id
FROM Depositor 

24

Find the names of all customers who have both a 
loan and an account in a bank.

SELECT customer_id
FROM Borrower 
INTERSECT
SELECT customer_id
FROM Depositor 

customer_id (Borrower)   customer_id (Depositor)

Wait! Do we have set intersection in 
relational algebra ☺?

 customer_id (Borrower) – ( customer_id (Borrower) –  customer_id (Depositor))



Additional operators

These operations do not add any power to relational 
algebra, but simplify common queries.

25

Set intersection (  )

Natural join (     )

Assignment ()

Left outer join (      ), Right outer join (      ) 

Division ()



Section 3

Additional

operators



The fundamental operators of the relational algebra 
introduced are sufficient to express any relational-
algebra query.

Motivation

However, if we restrict ourselves to just the 
fundamental operators, certain common queries are 
tedious to express.

Therefore, we define additional operators that do not add any 
power to the algebra, but simplify common queries

That is to say, for each additional operator, we can give an 
equivalent expression that use only the fundamental operators.
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Additional operators

Set intersection (  )

Natural join (     )

Assignment ()

Left outer join (      ), Right outer join (      ) 

28

Division ()



Set intersection

R  S = R – (R – S)

Example

Query: Find the employee_id of employees who work 
in department 1 and department 3.

R and S must have the same number of 
attributes and attribute data types are compatible.

SELECT employee_id
FROM Works_in
WHERE department_id=1

INTERSECT

SELECT employee_id
FROM Works_in
WHERE department_id=3

SQL

( πemployee_id ( σdepartment_id=1 ( Works_in ) ) ) ( πemployee_id ( σdepartment_id=3 ( Works_in ) ) )

Relational algebra with set intersection

Query 

processer

29

R - S

R S

R – (R - S )

( πemployee_id ( σdepartment_id=1 ( Works_in ) ) ) –
( ( πemployee_id ( σdepartment_id=1 ( Works_in ) ) ) – ( πemployee_id ( σdepartment_id=3 ( Works_in ) ) ) )

Equivalence relational algebra with only fundamental operators



Set intersection

Query 

processer

SELECT DISTINCT employee_id
FROM Works_in W1, Works_in W2
WHERE 
W1.employee_id = W2.employee_id AND
W1.department_id=1 AND
W2. department_id = 3 

SQL

πemployee_id (σW1.department_id=1 W2.department_id=3 (σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))))

For your reference, 
there is another way to 
answer the same query 
by joining the 
Works_in table with 
itself.

Works_in
employee_id department_id

1 1
2 1
1 3
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Set intersection

Query 

processer

SELECT DISTINCT employee_id
FROM Works_in W1, Works_in W2
WHERE 
W1.employee_id = W2.employee_id AND
W1.department_id=1 AND
W2. department_id = 3 

SQL

πemployee_id (σW1.department_id=1 W2.department_id=3 (σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))))

For your reference, 
there is another way to 
answer the same query 
by joining the 
Works_in table with 
itself.

Works_in
employee_id department_id

1 1
2 1
1 3

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 1
1 1 2 1
1 1 1 3
2 1 1 1
2 1 2 1
2 1 1 3
1 3 1 1
1 3 2 1
1 3 1 3

W1 (Works_in) × W2 (Works_in)
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Set intersection

Query 

processer

SELECT DISTINCT employee_id
FROM Works_in W1, Works_in W2
WHERE 
W1.employee_id = W2.employee_id AND
W1.department_id=1 AND
W2. department_id = 3 

SQL

πemployee_id (σW1.department_id=1 W2.department_id=3 (σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))))

For your reference, 
there is another way to 
answer the same query 
by joining the 
Works_in table with 
itself.

Works_in
employee_id department_id

1 1
2 1
1 3

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 1
1 1 2 1
1 1 1 3
2 1 1 1
2 1 2 1
2 1 1 3
1 3 1 1
1 3 2 1
1 3 1 3

W1 (Works_in) × W2 (Works_in)

32

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 1
1 1 1 3
2 1 2 1
1 3 1 1
1 3 1 3

σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))



Set intersection

Query 

processer

SELECT DISTINCT employee_id
FROM Works_in W1, Works_in W2
WHERE 
W1.employee_id = W2.employee_id AND
W1.department_id=1 AND
W2. department_id = 3 

SQL

πemployee_id (σW1.department_id=1 W2.department_id=3 (σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))))

For your reference, 
there is another way to 
answer the same query 
by joining the 
Works_in table with 
itself.

Works_in
employee_id department_id

1 1
2 1
1 3

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 1
1 1 2 1
1 1 1 3
2 1 1 1
2 1 2 1
2 1 1 3
1 3 1 1
1 3 2 1
1 3 1 3

W1 (Works_in) × W2 (Works_in)

σW1.department_id=1 W2.department_id=3 (σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in)))

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 1
1 1 1 3
2 1 2 1
1 3 1 1
1 3 1 3

σW1.employee_id=W2.employee_id (W1 (Works_in) × W2 (Works_in))

W1.employee_id W1.department_id W2.employee_id W2.department_id
1 1 1 3



Natural join

Usually, a query that involves a Cartesian product 
includes a selection operation on the result of the 
Cartesian product.

The selection operation most often requires that all 
attributes that are common to the relations that are 
involved in the Cartesian product be equated.

where R  S = {A1, A2, … , An} 

34

r     s = πR  S( σr.A1 = s.A1  r.A2 = s.A2  …  r.An = s.An ( r × s ) )

Requires the common attributes to be equated

r     s =s    rCommutative:



Natural join

35

The schema of R      S is R-schema  S-schema  
(repeated attributes are removed)

For each pair of tuples tr from R and ts from S, 

If tr and ts share the same value over each of the common 
attributes in R and S, 

Tuple t will be added to the result of R      S.



Natural join

36

A B

1 1

1 2

2 3

R
A C

1 2

2 1

S

R.A R.B S.A S.C

1 1 1 2

1 1 2 1

1 2 1 2

1 2 2 1

2 3 1 2

2 3 2 1

R × S

A B C

1 1 2

1 2 2

2 3 1

A B C

1 1 2

1 2 2

2 3 1

σR.A=S.A( R × S ) 
R.A R.B S.A S.C

1 1 1 2

1 2 1 2

2 3 2 1

πA,B,C( σR.A=S.A( R × S )) 

Common attributes: R  S = {A} 

Attributes of the resulting relation: R  S = {A,B,C} 

R S

equivalent to:



Assignment

37

It is convenient to write a relational-algebra expression 
by assigning parts of it to temporary relation variables.

The assignment operator, denoted by “”, works like 
assignment operator “=” in programming language. 

temp1 a(R)

temp2 a(S)

result  temp1 – temp2

With the assignment 
operator, a query 
can be written as a 
sequential program.

temp1, temp2, result are called “relation variable”.



Outer join

The outer-join operator is an extension of the join 
operation to deal with missing information.

name

Kit
Ben
Jolly

Yvonne

customer_id

C1
C2
C2
C4
C4

Customer Depositor

account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

Outer join

Natural join result, plus 

The tuples that do not match any tuples from the other 
side.

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

Customer ⋈ Depositor

Natural join (e.g., joining Customer and Depositor) 
result in a table without the information of 
customers (e.g., C3 in this case) who has no account.

address

CB320
CB326
CB311
CB415

38



Left outer join

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C4

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

R        S  =  ( R ⋈ S )  ( R - R( R ⋈ S )) × { (null, … , null ) }

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

Customer ⋈ Depositor

39

Let’s illustrate why the left outer join is defined as
( R ⋈ S )  ( R - R( R ⋈ S )) × { (null, … , null ) } 
through a step-by-step illustration.



Left outer join

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C4

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

Customer ⋈ Depositor

Customer - Customer’s attributes (Customer ⋈ Depositor )

customer_id name address

C3 Jolly CB311

40

R        S  =  ( R ⋈ S )  ( R - R( R ⋈ S )) × { (null, … , null ) }

Finding missed tuples in the natural join
R - R( R ⋈ S ) is to generate the tuples in R (i.e., Customer) 
that are missed in the natural join. 
i.e., C3 Jolly in Customer doesn’t have any matched records 
in Depositor, we use this part to recover Jolly’s record.



Left outer join

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C4

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

Customer ⋈ Depositor

Customer - Customer’s attributes (Customer ⋈ Depositor )

customer_id name address

C3 Jolly CB311

Customer - Customer’s attributes (Customer ⋈ Depositor ) × { (null, … , null ) }

customer_id name address account_id

C3 Jolly CB311 null
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R        S  =  ( R ⋈ S )  ( R - R( R ⋈ S )) × { (null, … , null ) }

Constructing the missed tuple by adding null value to extra attributes
The  “× { (null, … , null ) }” part simply add back the remaining column 
values as null because there is no matched records in S (i.e., Depositor).



Left outer join

equivalent to: Customer          Depositor

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C4

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C3 Jolly CB311 null

C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C4 Yvonne CB415 A4

Customer ⋈ Depositor

Customer - Customer’s attributes (Customer ⋈ Depositor )

customer_id name address

C3 Jolly CB311

Customer - Customer’s attributes (Customer ⋈ Depositor ) × { (null, … , null ) }

customer_id name address account_id

C3 Jolly CB311 null

(Customer ⋈ Depositor)  (Customer - Customer’s attributes (Customer ⋈ Depositor )) × { (null, … , null ) }
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R        S  =  ( R ⋈ S )  ( R - R( R ⋈ S )) × { (null, … , null ) }



Right outer join
R        S  =  ( R ⋈ S )  ( S - S( R ⋈ S )) × { (null, … , null ) }

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C5

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3

Customer ⋈ Depositor
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Let’s illustrate why the right outer join is 
defined as
( R ⋈ S )  ( S - S( R ⋈ S )) × { (null, … , null ) }
through a step-by-step illustration.



Finding missed tuples in the natural join
S - S( R ⋈ S ) is to generate the tuples in S (i.e., 
Depositor) that are missed in the natural join. 
i.e., C5 in Depositor doesn’t have any matched records 
in Customer, we use this part to recover C5’s record.

Right outer join

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C5

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3

Customer ⋈ Depositor

Depositor - Depositor’s attributes (Customer ⋈ Depositor )

customer_id account_id

C5 A4
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R        S  =  ( R ⋈ S )  ( S - S( R ⋈ S )) × { (null, … , null ) }



Constructing the missed tuple by adding null value to extra attributes
The  “× { (null, … , null ) }” part simply add back the remaining column 
values as null because there is no matched records in R (i.e., Customer).

Right outer join

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C5

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3

Customer ⋈ Depositor

Depositor - Depositor’s attributes (Customer ⋈ Depositor )

Depositor - Depositor’s attributes (Customer ⋈ Depositor ) × { (null, … , null ) }

customer_id name address account_id

C5 null null A4

customer_id account_id

C5 A4
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R        S  =  ( R ⋈ S )  ( S - S( R ⋈ S )) × { (null, … , null ) }



Right outer join

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3
C5 null null A4

name address

Kit CB320
Ben CB326
Jolly CB311

Yvonne CB415

customer_id

C1
C2
C2
C4
C5

Customer Depositor
account_id

A1
A1
A2
A3
A4

customer_id

C1
C2
C3
C4

customer_id name address account_id

C1 Kit CB320 A1
C2 Ben CB326 A1
C2 Ben CB326 A2
C4 Yvonne CB415 A3

Customer ⋈ Depositor

Depositor - Depositor’s attributes (Customer ⋈ Depositor )

Depositor - Depositor’s attributes (Customer ⋈ Depositor ) × { (null, … , null ) }

customer_id name address account_id

C5 null null A4

customer_id account_id

C5 A4

(Customer ⋈ Depositor)  (Depositor - Depositor’s attributes (Customer ⋈ Depositor )) × { (null, … , null ) }

equivalent to: Customer         Depositor
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R        S  =  ( R ⋈ S )  ( S - S( R ⋈ S )) × { (null, … , null ) }



Division 
Notation:  R  S

Definition
Let S  R

R  S = { t | t  R-S(R)   (  s  S, ( (t  s)  R) )}

A B

1 1
2 1
2 2
3 3
4 1
4 2
4 3

B

1
2

A

2
4

R S

R  S

The attributes in relation S is a subset of 
the attributes in relation R.

Condition 1. A resulting 
tuple t has to be in the 
relation R-S(R)

A
1
2
3
4

R-S(R)
Condition 2. And if we combine t with each 
tuple s  S, all the combined tuples have to be 
included in R.
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A
1

A B
1 1
1 2

 s  S, ( t1  s )

For each tuple t  R-S(R)1 “ s  S, t  s” part:
Generate tuples by union t with 
all tuples s  S

2 “ s  S, ( (t  s)  R)” part:
Then we check if both tuples
generated are in R. 

3

t2  R-S(R) A
2

A B
2 1
2 2

 s  S, ( t2  s )

In this case, not both tuples are in 
R, so t1 is NOT in result of R  S t1  R-S(R)

In this case, both tuples are in R, 
so t2 is in result of R  S 



Division 

Takes
student_id course_id Grade

1 1 A
1 2 B
1 3 A+
2 3 B-
3 3 B
4 1 C
4 2 A-

Student
student_id name dpt_id

1 Peter 1
2 Sharon 1
3 David 2
4 Joe 3

Course
course_id title dpt_id credit

1 Intro to DB 1 6
2 Programming I 1 6
3 Accounting 2 6

Division is used to express queries with “all”

Find the IDs of all students who have taken all CS courses 
(dpt_id = 1).

Observation
Let’s focus on the result of R  S (say, the tuple A=2), it means that 

A B

1 1
2 1
2 2
3 3
4 1
4 2
4 3

B

1
2

A

2
4

R S

R  S
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For the tuples with values in attribute A equals to 2 in relation R, 

Those tuples’s values in attribute B covers ALL values in attribute B of S.



Division 

Student
student_id name dpt_id

1 Peter 1
2 Sharon 1
3 David 2
4 Joe 3

Takes
student_id course_id Grade

1 1 A
1 2 B
1 3 A+
2 3 B-
3 3 B
4 1 C
4 2 A-

Course
course_id title dpt_id credit

1 Intro to DB 1 6
2 Programming I 1 6
3 Accounting 2 6

course_id (σ dpt_id=1(Course) ) 

course_id

1
2

Step 1. All part (the relation S): What is the course ID 
of all CS courses (dpt_id = 1)?
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σ dpt_id=1(Course)
course_id title dpt_id credit

1 Intro to DB 1 6
2 Programming I 1 6



Division 

Student
student_id name dpt_id

1 Peter 1
2 Sharon 1
3 David 2
4 Joe 3

Takes
student_id course_id Grade

1 1 A
1 2 B
1 3 A+
2 3 B-
3 3 B
4 1 C
4 2 A-

Course
course_id title dpt_id credit

1 Intro to DB 1 6
2 Programming I 1 6
3 Accounting 2 6

course_id (σ dpt_id=1(Course) ) 

course_id

1
2

student_id course_id

1 1
1 2
1 3
2 3
3 3
4 1
4 2

 student_id,course_id (Takes)

Step 2. Dividend part (the relation R): What is the list of 
Takes tuples (i.e., all < student_id, course_id > pairs)?  
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Division 

 student_id,course_id (Takes)  course_id (σ dpt_id=1(Course) ) course_id (σ dpt_id=1(Course) ) 

course_id

1
2

student_id course_id

1 1
1 2
1 3
2 3
3 3
4 1
4 2

student_id

1
4

 student_id,course_id (Takes)

Step 3. Division: Which student in  student_id,course_id

(Takes) takes all CS courses course_id (σ dpt_id=1(course) ) ?.
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Explanation: Let’s focus on student_id = 1 in the result
It means that, for the tuples in Takes with student_id=1,    

Those tuple’s value in course_id attribute 
covers all 1 and 2 (i.e., the CS courses).

That is to say, student with student_id 1 takes ALL CS courses.
The same argument apples to student_id 4.



Division 

A B

1 1
1 2
2 3

R S

(R × S)  S

C D

1 2
2 2

R × S 
A B C D

1 1 1 2
1 1 2 2
1 2 1 2
1 2 2 2
2 3 1 2
2 3 2 2

A B

1 1
1 2
2 3

Division has a property: R  S  S = R
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= R

An intuitive property of the division operator of the relational algebra is simply that it 

is the inverse of the cartesian product. For example, if you have two relations R and 

S, then, if U is a relation defined as the cartesian product of them: U = R x S, 
the division is the operator such that U ÷ R = S and U ÷ S = R



Section 4

Extended

operators



Aggregation

Aggregation function takes a collection of values and 
returns a single-valued result.

e.g., avg, min, max, sum, count, count-distinct

Aggregate operation in relational algebra:

Grouping - Divides the tuples into groups.

Aggregation - Computes an aggregation function in 
each group to create a result tuple.
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Aggregation

E – a relation (can be a result of relational algebra 
expression).

Tuples with the same values in G1 to Gn are put into the 
same group.  

G1, …, Gn – attributes used to form groups.  

G can be empty, which means that the whole relation is 
one group.

Fi(Ai) – an aggregate function applied on an attribute.
61

F1(A1), F2(A2), …, Fn(An)
g (E)

G1, G2, …, Gn



Aggregation
Account

branch_id

B1
B2
B2
B1

balance

500
400
900
700

account_id

A1
A2
A3
A4

Result(branch_id, sum_of_balance) ( 

branch_id g sum(balance) (Account)

) 

branch_id sum_of_balance

B1 1200
B2 1300

Result

62

Step 1. Let’s group the tuples in 
Account according to their 
branch_id.

Step 2. Then aggregate the tuples
in each group by summing their 
values in the balance attribute.

Step 3. Since the resulting relation 
has no name after aggregation, 
we use renaming operator to give 
name to the relation and 
attributes.



Aggregation

Result(dpt_id, gender, count) ( 

dpt_id, gender g count() (Student)

) 

dpt_id gender count

1 M 1
1 F 2
2 M 2

Result

Student
student_id name dpt_id gender

1 Peter 1 M

2 Sharon 1 F
3 David 2 M
4 Joe 2 M
5 Betty 1 F

63

Note that grouping can be 
done on multiple attributes.

E.g., in this case, we group 
tuples in Student with the 
same values in both dpt_id
and gender attributes.

i.e., We are finding the 
number of male / female 
students in each department.



Section 5

Algebraic

properties



Transformation of expression

A query can be expressed in several different ways, 
with different cost of evaluation.

Two relational-algebra expressions are said to be 
equivalent if, on every legal database instance, the 
two expressions generate the same set of tuples.

In the following discussions, we treat a relation as a 
set of tuples, the order of the tuples is irrelevant.

65



Expression tree:

Tells which operator is 
executed ahead of another.

It allow transformation of 
the execution order by 
applying the equivalence rules. 
(Alter the tree)

Equivalence rules

Rule 1. Only the final operations in a sequence of 
projection operations are needed.

πL1 (πL2 (…(πLn ( E ))…)) = πL1 (E) 

Employee

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Smith 24000

π employee_id

πemployee_id,salary

Employee

πemployee_id,salary(Employee)

employee_id name

1 Jones
2 Smith

3 Smith

πemployee_id(πemployee_id,salary(Employee))

employee_id

1
2
3

π employee_id ( 
πemployee_id,salary( Employee )

)
Regular expression

Expression tree 66



Equivalence rules

Rule 1. Only the final operations in a sequence of 
projection operations are needed.

Employee

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Smith 24000

π employee_id

πemployee_id,salary

Employee

πemployee_id(Employee)

employee_id

1
2
3

π employee_id ( 
πemployee_id,salary( Employee )

)
Regular expression

π employee_id ( Employee )equivalent 
to Regular expression

Expression tree

π employee_id

Employee

equivalent 
to

Transformed expression tree 67

Remove it

πL1 (πL2 (…(πLn ( E ))…)) = πL1 (E) 



Equivalence rules

Rule 2. Conjunctive selection operations can be 
deconstructed into a sequence of individual selections.

σp1  p2( E ) = σp1 (σp2 ( E ) )

Employee

employee_id name salary

1 Jones 26000
2 Smith 28000

3 Smith 24000

σ name="Smith"  salary>24000

Employee

σname="Smith"  salary>24000( Employee )
σ name="Smith" (σ salary>24000 ( Employee ))

employee_id name salary

2 Smith 28000

σ salary>24000(Employee)

employee_id name salary

1 Jones 26000
2 Smith 28000

You may wonder why breaking down the conjunctive selections 
is useful.
We will show that it is useful to reduce temporary result.
We can try to push each selection predicates down the tree
(to perform selection as early as possible).

σ name="Smith" (
σ salary>24000 ( Employee ) 

)

σ name="Smith" 

σ salary>24000 

Employee

equivalent 
to
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Equivalence rules

Rule 3. Selection operations are commutative.

σp1 (σp2 ( E ) ) = σp2 (σp1 ( E ) )

Employee
employee_id name salary

1 Jones 26000
2 Smith 28000
3 Smith 24000
4 David 25000

σ salary>24000(σ name="Smith" ( Employee ))

σ salary>24000(Employee)

employee_id name salary

1 Jones 26000
2 Smith 28000

4 David 25000

σ name="Smith" (
σ salary>24000(Employee) 

)

σ name="Smith" 

σ salary>24000 

Employee

σ salary>24000 (
σ name="Smith"(Employee) 

)

σ salary>24000 

σ name="Smith" 

Employee

σ name="Smith"(Employee)

employee_id name salary

2 Smith 28000
3 Smith 24000

employee_id name salary

2 Smith 28000

σ name="Smith" (σ salary>24000 ( Employee ))

employee_id name salary

2 Smith 28000

Employes
employee_id name salary

1 Jones 26000
2 Smith 28000
3 Smith 24000
4 David 25000

Note that the two executions 
have different costs. In particular, 
the size of their temporary 
relations are different.



Equivalence rules

Rule 4. Natural join operations are associative.

( E1⋈ E2 )⋈ E3 = E1⋈ ( E2 ⋈ E3 ) 

(Employee ⋈ Works_in)⋈ Department 

⋈

Employee Works_in

Department

⋈

Employee ⋈ ( Works_in⋈ Department ) 

⋈

Works_in Department

Employee

⋈

equivalent 
to
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Although both expression trees return the same 
resulting relation, these two expression trees have 
different costs because the size of their temporary 
relations are different

r ⋈ s = πR  S( σr.A1 = s.A1  r.A2 = s.A2  …  r.An = s.An ( r × s ) )



Equivalence rules

⋈

Employee Works_in

Department

⋈

(Employee ⋈ Works_in)⋈ Department 

employee_id name salary department_id

1 Jones 26000 1
2 Smith 28000 1
2 Smith 28000 2
3 Parker 35000 3
4 Smith 24000 3

employee_id Employee.
name

salary department_id Department.
name

1 Jones 26000 1 Toys
2 Smith 28000 1 Toys
2 Smith 28000 2 Tools
3 Parker 35000 3 Food
4 Smith 24000 3 Food

Employee DepartmentWorks_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

department_id name

1 Toys

2 Tools

3 Food

employee_id department_id

1 1
2 1
2 2
3 3
4 3

Employee ⋈ Works_in

(Employee ⋈ Works_in)⋈ Department
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Natural join evaluates 4*5 = 20 combinations
result temporary relation consists of 5 tuples and 4 columns. 

Expression tree A.



Equivalence rules

employee_id department_id name

1 1 Toys
2 1 Toys
2 2 Tools
3 3 Food
4 3 Food

employee_id Employee.
name

salary department_id Department.
name

1 Jones 26000 1 Toys
2 Smith 28000 1 Toys
2 Smith 28000 2 Tools
3 Parker 35000 3 Food
4 Smith 24000 3 Food

Employee DepartmentWorks_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

department_id name

1 Toys

2 Tools

3 Food

employee_id department_id

1 1
2 1
2 2
3 3
4 3

Works_in ⋈ Department

Employee ⋈ ( Works_in⋈ Department ) 

⋈

Works_in Department

Employee

⋈

Employee ⋈ ( Works_in⋈ Department ) 
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Natural join evaluates 5*3 = 15 combinations
result temporary relation consists of 5 tuples and 3 columns. 

Expression tree B.



Equivalence rules

Rule 5. The selection operation distributes over the 
natural join operation under the following two conditions.

Rule 5a. It distributes when all the attributes in selection 
condition involve only the attributes of one of the expressions 
(say, E1) being joined. σp ( E1⋈ E2) = (σp ( E1 ) ⋈ E2) 

σ Employee.name="Smith"(
Employee ⋈ Works_in

) 

⋈

Employee Works_in

σ Employee.name="Smith"

(σ Employee.name="Smith" (Employee) ⋈ Works_in)

⋈

Employee

Works_inσ Employee.name="Smith"

equivalent 
to
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r ⋈ s = πR  S( σr.A1 = s.A1  r.A2 = s.A2  …  r.An = s.An ( r × s ) )



Equivalence rules

employee_id name salary department_id

1 Jones 26000 1
2 Smith 28000 1
2 Smith 28000 2
3 Parker 35000 3
4 Smith 24000 3

Employee ⋈ Works_in

σ Employee.name="Smith“( Employee ⋈ Works_in ) 

⋈

Employee Works_in

σ Employee.name="Smith"

σ Employee.name="Smith"(
Employee ⋈ Works_in

) 

employee_id name salary department_id

2 Smith 28000 1
2 Smith 28000 2
4 Smith 24000 3
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Natural join evaluates 4*5 = 20 combinations
result temporary relation consists of 5 tuples and 4 columns. 

Employee Works_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

employee_id department_id

1 1
2 1
2 2
3 3
4 3

Expression tree A.



Equivalence rules

Employee Works_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

employee_id department_id

1 1
2 1
2 2
3 3
4 3

σ Employee.name="Smith" (Employee)

σ Employee.name="Smith" (Employee) ⋈ Works_in

employee_id name salary department_id

2 Smith 28000 1
2 Smith 28000 2
4 Smith 24000 3

⋈

Employee

Works_inσ Employee.name="Smith"

σ Employee.name="Smith" (Employee) ⋈ Works_in

employee_id name salary

2 Smith 28000
4 Smith 24000

When comparing with the equivalence 
expression tree 1, we can see that if we push 
the selection predicates down the natural 
join (perform selection earlier than joining), 
then we will probably have a smaller 
temporary relation.
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Expression tree B.

Natural join evaluates 2*5 = 10 combinations
result temporary relation consists of 3 tuples and 4 columns. 



Equivalence rules

Rule 5b. The selection distributes when selection condition p1 
involves only the attributes of E1 and p2 involves only the 
attributes of E2.

σp1  p2( E1⋈ E2) = (σp1 ( E1 ) ⋈ σp2 ( E2 )) 

σ Employee.name="Smith" Works_in.department_id=3(
Employee ⋈Works_in

) 

⋈

Employee Works_in

σ Employee.name="Smith" Works_in.department_id=3

σ Works_in.department_id=3

(    σ Employee.name="Smith" (Employee) 
⋈

σ Works_in.department_id=3 ( Works_in ) )

⋈

Employee Works_in

σ Employee.name="Smith"

equivalent 
to
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r ⋈ s = πR  S( σr.A1 = s.A1  r.A2 = s.A2  …  r.An = s.An ( r × s ) )



Equivalence rules

employee_id name salary department_id

1 Jones 26000 1
2 Smith 28000 1
2 Smith 28000 2
3 Parker 35000 3
4 Smith 24000 3

Employee Works_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

employee_id department_id

1 1
2 1
2 2
3 3
4 3

Employee ⋈ Works_in

σ Employee.name="Smith" Works_in.department_id=3(Employee ⋈ Works_in) 

employee_id name salary department_id

4 Smith 24000 3

⋈

Employee Works_in

σ Employee.name="Smith" Works_in.department_id=3

σ Employee.name="Smith" Works_in.department_id=3(
Employee ⋈Works_in

) 

Natural join evaluates 4*5 = 20 combinations
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Expression tree A.



Equivalence rules

Employee Works_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

employee_id department_id

1 1
2 1
2 2
3 3
4 3

σ Employee.name="Smith"( Employee )

( σ Employee.name="Smith" (Employee) ⋈ σ Works_in.department_id=3(Works_in) )

employee_id name salary department_id

4 Smith 24000 3

⋈

Employee Works_in

σ Employee.name="Smith" σ Works_in.department_id=3

(    σ Employee.name="Smith" (Employee) 
⋈

σ Works_in.department_id=3 ( Works_in ) )

employee_id name salary

2 Smith 28000
4 Smith 24000

employee_id department_id

3 3
4 3

σ Works_in.department_id=3(Works_in)

When comparing with the equivalence 
expression 1, we can see that if we 
push the selection predicates down the 
natural join (perform selection earlier 
than joining), the natural join would 
consider fewer combinations.

Natural join evaluates 4 combinations
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Expression tree B.



Equivalence rules

Rule 6. The projection operation can distribute over the 
natural join operation.

Let L1 and L2 be some attributes from E1 and E2,respectively.

Let L3 be attributes that are involved in join condition, but are 
not in L1  L2.

πL1 L2 ( E1⋈ E2) = πL1 L2 (  (πL1  L3 (E1)) ⋈ (πL2  L3 (E2)) ) 
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r ⋈ s = πR  S( σr.A1 = s.A1  r.A2 = s.A2  …  r.An = s.An ( r × s ) )



Equivalence rules

π Empoyee.name, Works_in.department_id (Employee⋈ Works_in)

⋈

Employee

π Empoyee.name, Works_in.department_id

Works_in

π Empoyee.name, Works_in.department_id (
π Empoyee.name, Employee.employee_id (Employee)
⋈
π Works_in.department_id, Works_in.employee_id(Works_in)

)

⋈

Employee

πEmpoyee.name,Works_in.department_id

Works_in

πEmpoyee.name,

Employee.employee_id

πWorks_in.department_id,

Works_in.employee_id

L1 = Empoyee.name 

L3 = employee_id

L2 = Works_in.department_id

πL1  L2 ( E1⋈ E2) = πL1  L2 (  (πL1  L3 (E1)) ⋈ (πL2  L3 (E2)) ) 

equivalent to
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The attribute used in natural join



Equivalence rules

employee_id name salary department_id since

1 Jones 26000 1 2012/1/1

2 Smith 28000 1 2011/3/2

2 Smith 28000 2 2014/2/1

3 Parker 35000 3 2013/2/2

4 Smith 24000 3 2013/2/8

Employee ⋈ Works_in

π Empoyee.name, Works_in.department_id (Employee ⋈ Works_in)

Employee Works_in

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

⋈

Employee

π Empoyee.name, Works_in.department_id

Works_in

π Empoyee.name, Works_in.department_id

(Employee⋈ Works_in)

Natural join evaluates 4*5 = 20 combinations, 
result temporary relation consists of 5 columns. 

name department_id

Jones 1
Smith 1
Smith 2
Parker 3
Smith 3

employee_id department_id since

1 1 2012/1/1
2 1 2011/3/2
2 2 2014/2/1
3 3 2013/2/2
4 3 2013/2/8
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Expression tree A.



Equivalence rules

Employee Works_in

⋈

Employee

πEmpoyee.name,Works_in.department_id

Works_in

πEmpoyee.name,

Employee.employee_id

πWorks_in.department_id,

Works_in.employee_id

π Empoyee.name, Works_in.department_id (
π Empoyee.name, Employee.employee_id (Employee)
⋈
π Works_in.department_id, Works_in.employee_id(Works_in)

)

πEmpoyee.name, 

Employee.employee_id( Employee )

πWorks_in.department_id,

Works_in.employee_id (Works_in)

Natural join evaluates 4*5 = 20 combinations, 
result temporary relation consists of 3 columns. 

employee_id name

1 Jones
2 Smith
3 Parker
4 Smith

employee_id department_id

1 1
2 1
2 2
3 3
4 3

πEmpoyee.name, Employee.employee_id( Employee ) ⋈
πWorks_in.department_id, Works_in.employee_id (Works_in)

name department_id

Jones 1
Smith 1
Smith 2
Parker 3
Smith 3

employee_id name department_id

1 Jones 1
2 Smith 1
2 Smith 2
3 Parker 3
4 Smith 3

employee_id name salary

1 Jones 26000
2 Smith 28000
3 Parker 35000
4 Smith 24000

employee_id department_id since

1 1 2012/1/1
2 1 2011/3/2
2 2 2014/2/1
3 3 2013/2/2
4 3 2013/2/8

π Empoyee.name, Works_in.department_id ( πEmpoyee.name, Employee.employee_id( Employee ) ⋈
πWorks_in.department_id, Works_in.employee_id (Works_in) )
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Equivalence rules

Rule 7. The set operations union and intersections 
are commutative.

E1 E2 = E2  E1

The set different operation is NOT 
commutative 

E1 E2 = E2  E1

E1 - E2 ≠ E2 - E1

E1 - E2

E1 E2

E2 – E1≠
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Equivalence rules

Rule 8. The set operations union and intersections 
are associative.

(E1 E2)  E3 = E1 ( E2  E3 )

The set different operation is NOT associative.

(E1 E2)  E3 = E1 ( E2  E3 )

(E1 - E2) - E3 ≠ E1 - ( E2 - E3 )

E1 E2

E3

E1 - ( E2 - E3 )

E1 E2

E3(E1 - E2) - E3
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Equivalence rules

Rule 9. The selection operation distributes over the 
union, intersection and set difference operations

σp ( E1 - E2 ) = σp ( E1 ) - σp ( E2 )

σp ( E1  E2 ) = σp ( E1 )  σp ( E2 )

σp ( E1  E2 ) = σp ( E1 )  σp ( E2 )

ID name provider_id stock #tracks

CD1 One Heart P1 55 14
CD2 Miracle P2 4 14

Audio_CD

ID name provider_id stock length

DVD1 Prince of Persia P2 3 110
DVD2 Iron man 3 P3 60 90
DVD3 Legend is born: Ip Man P3 17 90

DVD

σ stock<10 (
π name, provider_id, stock ( Audio_CD ) 
π name, provider_id, stock ( DVD )

)

σ stock<10 (π name, provider_id, stock ( Audio_CD )) 
σ stock<10 (π name, provider_id, stock ( DVD ))

equivalent to
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Equivalence rules

ID name provider_id stock #tracks

CD1 One Heart P1 55 14
CD2 Miracle P2 4 14

Audio_CD

ID name provider_id stock length

DVD1 Prince of Persia P2 3 110
DVD2 Iron man 3 P3 60 90
DVD3 Legend is born: Ip Man P3 17 90

DVD



σ stock<10

π name, provider_id, stock

σ stock<10 (
π name, provider_id, stock ( Audio_CD ) 
π name, provider_id, stock ( DVD )

)

Audio_CD DVD

π name, provider_id, stock

name provider_id stock

One Heart P1 55
Miracle P2 4

π name, provider_id, stock (Audio_CD)

name provider_id stock

Prince of Persia P2 3
Iron man 3 P3 60

Legend is born: Ip Man P3 17

π name, provider_id, stock (DVD)

π name, provider_id, stock ( Audio_CD )  π name, provider_id, stock ( DVD )

name provider_id stock

One Heart P1 55
Miracle P2 4

Prince of Persia P2 3
Iron man 3 P3 60

Legend is born: Ip Man P3 17

σ stock<10 (π name, provider_id, stock ( Audio_CD )  π name, provider_id, stock ( DVD ) )

name provider_id stock

Miracle P2 4
Prince of Persia P2 3
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Equivalence rules

ID name provider_id stock #tracks

CD1 One Heart P1 55 14
CD2 Miracle P2 4 14

Audio_CD

ID name provider_id stock length

DVD1 Prince of Persia P2 3 110
DVD2 Iron man 3 P3 60 90
DVD3 Legend is born: Ip Man P3 17 90

DVD



π name, provider_id, stock π name, provider_id, stock

name provider_id stock

One Heart P1 55
Miracle P2 4

π name, provider_id, stock (Audio_CD)

name provider_id stock

Prince of Persia P2 3
Iron man 3 P3 60

Legend is born: Ip Man P3 17

π name, provider_id, stock (DVD)

σ stock<10 (π name, provider_id, stock ( Audio_CD ))  σ stock<10 (π name, provider_id, stock ( DVD ))

name provider_id stock

Miracle P2 4
Prince of Persia P2 3

Audio_CD DVD

σ stock<10 (π name, provider_id, stock ( Audio_CD )) 
σ stock<10 (π name, provider_id, stock ( DVD ))

σ stock<10 σ stock<10

name provider_id stock

Miracle P2 4

σ stock<10 (π name, provider_id, stock ( Audio_CD ))

name provider_id stock

Prince of Persia P2 3

σ stock<10 (π name, provider_id, stock ( DVD ))
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Equivalence rules

Rule 10. The projection operation distributes over 
the union operation

πL ( E1  E2 ) = πL ( E1 )  πL ( E2 )

Projection does not distribute over intersection and set 
difference.

πL ( E1  E2 ) ≠ πL ( E1 )  πL ( E2 )

πL ( E1 - E2 ) ≠ πL ( E1 ) - πL ( E2 )
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Equivalence rules

R

S

Why projection does not distribute over 
intersection and set difference?

To show that projection does not distribute over 
intersection, you only need to provide a counter example.

A B

1 2

A B

1 1

A B

R  S

Empty set

A

1

πA ( R )

A

πA ( R  S )

Empty set

A

1

πA ( S )
A

1

πA ( R )  πA ( S )

This counter example shows that 
πA ( R  S ) ≠  πA ( R ) πA ( S )

Now, can you try to construct a 
counter example to show that 
projection does not distribute over 
set difference? 

≠
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Section 6

Example of 

query optimization



Find the names of all instructors in the CS department (dpt_id = 
1) who have taught a course in 2nd semester, together with the 
course title of all the courses that the instructors teach.

Teaches

instructor_id course_id sem

1 1 1
1 2 2
2 4 1
3 3 2

Instructor
instructor_id name dpt_id

1 Kit 1
2 Ben 1
3 Michael 2
4 William 3

Transformation

Course

course_id title credit

1 Intro to DB 6
2 Programming I 6
3 Accounting 6
4 Algorithms 6

92

SELECT I.name, C.title
FROM Instructor I, Teaches T, Course C
WHERE I.dpt_id = 1  AND

T.sem=2 AND
I.instructor_id = T.instructor_id AND 
T.course_id = C.course_id ;

SQL

πI.name,C.title ( 
σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈ ( T( Teaches) ⋈ C( Course) )  
)

) 

Relational algebra



Transformation
πI.name,C.title ( 

σ I.dpt_id =1  T.sem=2(
I( Instructor) ⋈ (T( Teaches) ⋈ C( Course))  

)
) 

Let’s try to push the projection 
πC.title downward and apply it 
ahead of the natural joins.

Since this natural join requires 
C.course_id = T.course_id, 
therefore, we have to add the 
joining attribute C.course_id to 
make the projection  
πC.course_id,C.title

Rule 6
πL1 L2 ( E1⋈ E2) =
πL1 L2 (  (πL1 L3 (E1)) ⋈ (πL2  L3 (E2)) ) 

⋈

T C

⋈

I

σ I.dpt_id=1  T.sem=2

πI.name,C.title

BEFORE AFTER

πI.name,C.title ( 
σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈
( T( Teaches) ⋈ π C.course_id, C.title (C( Course)))  

)
) 

equivalent 
to

⋈

T

C

⋈

σ I.dpt_id=1  T.sem=2

πI.name,C.title

πC.course_id,C.title

I
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Now we would like to push 
the selection down to reduce 
the size of the temporary result 
of the natural join.

As the selection involves 
relations I and T only, we would 
like to rearrange the natural 
joins to make I and T under one 
natural join.

Since natural joins are 
associative, we can make such 
rearrangement.

Transformation
πI.name,C.title ( 

σ I.dpt_id =1  T.sem=2(
( I( Instructor) ⋈ T( Teaches) ) 
⋈ π C.course_id, C.title ( C( Course))

)
) 

Rule 4

( E1⋈ E2 )⋈ E3 = E1⋈ ( E2 ⋈ E3 ) 

⋈

T

C

⋈

I

σ I.dpt_id=1  T.sem=2

πI.name,C.title

πC.course_id,C.title

BEFORE
AFTER

⋈

T C

⋈

I

σ I.dpt_id=1  T.sem=2

πI.name,C.title

πC.course_id,C.title

πI.name,C.title ( 
σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈
( T( Teaches) ⋈ π C.course_id, C.title (C( Course)))  

)
) 

equivalent 
to
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Transformation
πI.name,C.title ( 

σ I.dpt_id =1  T.sem=2(
( I( Instructor) ⋈ T( Teaches) ) 
⋈ π C.course_id, C.title ( C( Course))

)
) 

Rule 5a

σp1 ( E1⋈ E2) = (σp1 ( E1 ) ⋈ E2 ) BEFORE

Now we can push the 
selection down one level.

According to Rule 5a, 
we can distribute both 
selection predicates to 
the L.H.S. of the selection 
as the R.H.S. does not 
contain any attribute in 
the selection predicate.

⋈

T C

⋈

I

σ I.dpt_id=1  T.sem=2

πI.name,C.title

πC.course_id,C.title

πI.name,C.title ( 
(  σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈ T( Teaches) 
)

) 
⋈ π C.course_id, C.title ( C( Course))

) 

equivalent 
to

AFTER

⋈

T

C

⋈

I

πI.name,C.title

πC.course_id,C.titleσ I.dpt_id=1  T.sem=2
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Now we can further 
push the selection one 
more level down by 
applying rule 5b.

According to Rule 5b, 
we can distribute  

- σ I.dpt_id=1 to I
- σ T.sem=2 to T

Transformation

BEFORE

πI.name,C.title ( 
(  σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈ T( Teaches) 
)

) 
⋈ π C.course_id, C.title ( C( Course))

) 

πI.name,C.title ( 
(   σ I.dpt_id =1 ( I( Instructor) )

⋈
σ T.sem=2 ( T( Teaches) )

) 
⋈ π C.course_id, C.title ( C( Course) )

) 

equivalent 
to

⋈

T

C

⋈

I

πI.name,C.title

πC.course_id,C.titleσ I.dpt_id=1  T.sem=2

AFTER

⋈

T

C

⋈

I

πI.name,C.title

πC.course_id,C.title

σ I.dpt_id=1 σ T.sem=2

Rule 5b

σp1  p2( E1⋈ E2) = (σp1 ( E1 ) ⋈ σp1 ( E2 )) 
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Illustration (original tree)

⋈

⋈

I

T C

πI.name,C.title ( 
σ I.dpt_id =1  T.sem=2(

I( Instructor) ⋈
( T( Teaches) ⋈ C( Course) )  

)
) 

Teaches

instructor_id course_id sem

1 1 1
1 2 2
2 4 1
3 3 2

Instructor
instructor_id name dpt_id

1 Kit 1
2 Ben 1
3 Michael 2
4 William 3

Course

course_id title credit

1 Intro to DB 6
2 Programming I 6
3 Accounting 6
4 Algorithms 6

instructor_id name dpt_id course_id sem

1 Kit 1 1 1
1 Kit 1 2 2
2 Ben 1 4 1

3 Michael 2 3 2

T( Teaches) ⋈ C( Course)

instructor_id name dpt_id course_id sem title credit

1 Kit 1 1 1 Intro to DB 6
1 Kit 1 2 2 Programming I 6
2 Ben 1 4 1 Algorithms 6

3 Michael 2 3 2 Accounting 6

I( Instructor) ⋈ ( T( Teaches) ⋈ C( Course) )

Natural join evaluates 4*4 = 16 combinations. 

Natural join evaluates 4*4 = 16 combinations. 
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Illustration (original tree)
πI.name,C.title ( 

σ I.dpt_id =1  T.sem=2(
I( Instructor) ⋈
( T( Teaches) ⋈ C( Course) )  

)
) 

⋈

T C

⋈

I

σ I.dpt_id=1  T.sem=2

πI.name,C.title

instructor_id name dpt_id course_id sem title credit

1 Kit 1 1 1 Intro to DB 6
1 Kit 1 2 2 Programming I 6
2 Ben 1 4 1 Algorithms 6

3 Michael 2 3 2 Accounting 6

I( Instructor) ⋈ ( T( Teaches) ⋈ C( Course) )

instructor_id name dpt_id course_id sem title credit

1 Kit 1 2 2 Programming I 6

σ I.dpt_id =1  T.sem=2( I( Instructor) ⋈ ( T( Teaches) ⋈ C( Course) ))

name title

Kit Programming I

πI.name,C.title ( σ I.dpt_id =1  T.sem=2( I( Instructor) ⋈ ( T( Teaches) ⋈ C( Course) )))
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Illustration (transformed tree)
πI.name,C.title ( 

(   σ I.dpt_id =1 ( I( Instructor) )
⋈

σ T.sem=2 ( T( Teaches) )
) 
⋈ π C.course_id, C.title ( C( Course) )

) ⋈

T

C

I

πC.course_id,C.title

σ I.dpt_id=1 σ T.sem=2

Teaches

instructor_id course_id sem

1 1 1
1 2 2
2 4 1
3 3 2

Instructor
instructor_id name dpt_id

1 Kit 1
2 Ben 1
3 Michael 2
4 William 3

Course

course_id title credit

1 Intro to DB 6
2 Programming I 6
3 Accounting 6
4 Algorithms 6

σ T.sem=2 ( T( Teaches) )

instructor_id course_id sem

1 2 2
3 3 2

σ I.dpt_id =1 ( I( Instructor) )

instructor_id name dpt_id

1 Kit 1
2 Ben 1

π C.course_id, C.title ( C( Course) )

course_id title

1 Intro to DB
2 Programming I
3 Accounting

4 Algorithms

σ I.dpt_id =1 ( I( Instructor) ) ⋈ σ T.sem=2 ( T( Teaches) )

instructor_id name dpt_id course_id sem

1 Kit 1 2 2

Natural join evaluates 2*2 = 4 combinations. 
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⋈

T

C

⋈

I

πI.name,C.title

πC.course_id,C.title

σ I.dpt_id=1 σ T.sem=2

πI.name,C.title ( σ I.dpt_id =1 ( I( Instructor) ) ⋈ σ T.sem=2 ( T( Teaches) ) ⋈ π C.course_id, C.title ( C( Course) ) )

π C.course_id, C.title ( C( Course) )

course_id title

1 Intro to DB
2 Programming I
3 Accounting

4 Algorithms

σ I.dpt_id =1 ( I( Instructor) ) ⋈ σ T.sem=2 ( T( Teaches) )

instructor_id name dpt_id course_id sem

1 Kit 1 2 2

Natural join evaluates 1*4 = 4 combinations. 

instructor_id name dpt_id course_id sem title

1 Kit 1 2 2 Programming I

πI.name,C.title ( 
(   σ I.dpt_id =1 ( I( Instructor) )

⋈
σ T.sem=2 ( T( Teaches) )

) 
⋈ π C.course_id, C.title ( C( Course) )

) 

name title

Kit Programming I

σ I.dpt_id =1 ( I( Instructor) ) ⋈ σ T.sem=2 ( T( Teaches) ) ⋈ π C.course_id, C.title ( C( Course) )

Illustration (transformed tree)
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Summary 

Relational algebra (RA) defines a set of algebraic 
operations on tables, and output tables as result.

6 fundamental operations

101

Additional operations does not extend the power of the 
fundamental operators, but they simplify the expression.

Extended operations add expressive power.

Relational algebra (RA) is the basics of query 
optimization.
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