
Dataset

• Restaurant (restaurant_id, name))
• RestaurantCategory (restaurant_id, category)

• Foreign key: {restaurant_id} references Restaurant

• Branch (restaurant_id, branch_no, location, seats)
• Foreign key: {restaurant_id} references Restaurant

• Member (member_id, name, birthday, joined, points)
• (joined is the year the member joined)

• Visits (visit_id, member_id, restaurant_id, branch_no, date, score)
• Foreign keys: {restaurant_id, branch_no} references Branch,

{member_id} references Member

You can download tables.sql and
data.sql on Moodle and import them
to MySQL for testing.

Example 1 – Basic query

• List all branches showing the restaurant name and branch location,
order by the number of seats in the branches.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

Example 1 – join tables

• Where can I find all the information needed?
• Restaurant name – Restaurant

• Branch location – Branch

• What is the relationship between the two tables?
• They are connected by the key restaurant_id

This suggests:
SELECT … FROM Restaurant, Branch or
SELECT … Restaurant inner/outer join Branch

This gives a condition:
Restaurant.restaurant_id = Branch.restaurant_id

SELECT …

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id

= Branch.restaurant_id

First, we find and join all necessary tables that gives all
information needed for the query.

SELECT …

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id

= Branch.restaurant_id

OR

Here are the different types of the JOINs in SQL:

•(INNER) JOIN: Returns records that have matching values in both tables

•LEFT (OUTER) JOIN: Returns all records from the left table, and the matched
records from the right table

•RIGHT (OUTER) JOIN: Returns all records from the right table, and the
matched records from the left table

•FULL (OUTER) JOIN: Returns all records when there is a match in either left
or right table

Example 1- Select/Order

SELECT… showing the restaurant name and branch location

ORDER BY… order by seat numbers

Then we apply the constraints needed for the query.

SELECT Restaurant.name, Branch.location …

… ORDER BY Branch.seats

SELECT Restaurant.name,

Branch.location

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id

= Branch.restaurant_id

ORDER BY Branch.seats

SELECT Restaurant.name,

Branch.location

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id

= Branch.restaurant_id

ORDER BY Branch.seats

OR

Example 1 – answer Pi

name location

zzaHub Causeway Bay
McRonalds Admiralty
McRonalds Central

DeliItaly Admiralty
DeliItaly Causeway Bay

Starducks Wan Chai
DeliItaly Wan Chai

Starducks Central
UltraSandwich Admiralty

UltraSandwich North Point
UltraSandwich Central

SELECT Restaurant.name,

Branch.location

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id

= Branch.restaurant_id

ORDER BY Branch.seats

SELECT Restaurant.name,

Branch.location

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id

= Branch.restaurant_id

ORDER BY Branch.seats

OR

Exercise 1

• List all visiting records showing the
member ’s name and visiting date,
order by the score.

member_id name birthday joined points
1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score

1 1 4 3 2015-12-30 5

2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Exercise 1

• List all visiting records showing the member ’s name and visiting date,
order by the score.

Please draft the corresponding SQL before you continue

Exercise 1 - answer

SELECT

Member.name,

visits.date

FROM

visits,

Member

WHERE

visits.member_id = Member.member_id

ORDER BY

score

name date
Lonny 2018-05-10
Mavis 2018-06-07
Todd 2018-06-21
Keith 2018-12-04
Royce 2018-03-06
Todd 2018-01-19
Cleo 2018-12-09
Evan 2018-03-26

Lonny 2018-02-12
Alvin 2016-01-15
Royce 2018-07-27
Evan 2018-06-14
Cleo 2018-06-16
Keith 2018-01-27
Mavis 2018-06-11
Evan 2018-11-25
Cleo 2015-12-30
Keith 2018-05-08
Todd 2018-01-16

Lonny 2018-08-02
Keith 2018-04-22

Example 2 – Inner join and group by

• Find the name of restaurant branches in
Admiralty and the corresponding number

of visits. List only those with at least 2
visits.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Example 2 – Join tables

• We need the following information
• Restaurant name – Restaurant

• Branch location – Branch

• Number of visits – visits

• How should we join Branch and visits?
• We must join the table by the corresponding key.

SELECT …

FROM Restaurant, Branch, visits

WHERE Restaurant.restaurant_id = Branch.restaurant_id

AND Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

{restaurant_id, branch_no} is the primary key of Branch table.
We must match both columns when joining such table.

Example 2 – using inner join

• Alternatively we can use INNER JOIN
SELECT …

FROM Restaurant, Branch, visits

WHERE Restaurant.restaurant_id = Branch.restaurant_id

AND Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

SELECT …

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id = Branch.restaurant_id

INNER JOIN visits

ON Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

OR

Example 2 – SELECT…

• We need to extract two information from the joined table
• Restaurant.name from Restaurant table

• Number of visits from visits table – we need to use an aggregate function

• Aggregate function COUNT() in our query is used to count the
number of visits per branch, therefore we must add a GROUP BY

clause to group data by branches.

SELECT Restaurant.name, COUNT(*)

FROM …

SELECT Restaurant.name, COUNT(*)

FROM …

GROUP BY Branch.restaurant_id, Branch.branch_no

Without a GROUP BY clause, this will
count all result as one single group

Again, we need BOTH columns here.
When we refer to a table, we always use the
whole set of primary key

Example 2 - filter

• Finally we filter the data. There are two filters:
• Location is Admiralty – Filter on the raw data, we use the WHERE clause

• Number of visits is at least 2 – Filter on the aggregated data, we need to use
HAVING

SELECT …

WHERE Branch.location = 'Admiralty'

…

GROUP BY …

HAVING COUNT(*) >= 2

First filter data by Branch.location

The result is grouped

Finally we filter the groups

Example 2 - answer
name visit_count

UltraSandwich 3 SELECT Restaurant.name, COUNT(*) AS visit_count

FROM Restaurant, Branch, visits

WHERE Restaurant.restaurant_id = Branch.restaurant_id

AND Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

AND Branch.location = 'Admiralty'

GROUP BY Branch.restaurant_id, Branch.branch_no

HAVING visit_count >= 2
SELECT Restaurant.name, COUNT(*) AS visit_count

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id = Branch.restaurant_id

INNER JOIN visits

ON Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

WHERE Branch.location = 'Admiralty'

GROUP BY Branch.restaurant_id, Branch.branch_no

HAVING visit_count >= 2

OR

Exercise 2

• Find the maximum score given by each member,
considering only visits on or after year 2018.
Show only the members who have given a
maximum score of at least 3.
• Hint: you can compare a date string,

e.g., `date`>='2018-01-01'
member_id name birthday joined points

1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Exercise 2

• Find the maximum score given by each member, considering only visits on or
after year 2018. Show only the members who have given a maximum score of at

least 3.
• Hint: you can compare a date string,

e.g., `date`>='2018-01-01'

Please draft the corresponding SQL before you continue

Exercise 2 - answer

SELECT

Member.name,

MAX(score) AS max_score

FROM

Member,

visits

WHERE

Member.member_id = visits.member_id
AND visits.date >= '2018-01-01'

GROUP BY

Member.member_id

HAVING

max_score >= 3

name max_score
Cleo 5

Evan 5
Todd 6

Lonny 7
Keith 8
Royce 4
Mavis 5

Example 3 – Outer Join

• Find the name of restaurant branches in
Admiralty and the corresponding number

of visits. Show a count of 0 for branches
with no visiting record.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5

2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Example 3 – outer join

• This question is very similar to example 2, but there is one requirement that
cannot be achieved with inner join.

• Consider joining branch in Admiralty and visits.

• Not all of the branches appears in the joined table! To get a zero count, we must
use an outer join

restaurant_id branch_no location seats visit_id member_id restaurant_id branch_no date score
3 1 Admiralty 25 9 5 3 1 2018-04-22 8

4 2 Admiralty 100 15 7 4 2 2018-06-07 1
4 2 Admiralty 100 16 5 4 2 2018-12-04 2
4 2 Admiralty 100 17 3 4 2 2018-01-19 3

Branches in Admiralty INNER JOIN visits

restaurant_id branch_no location seats
1 1 Admiralty 10

3 1 Admiralty 25
4 2 Admiralty 100

Branch in Admiralty

restaurant_id branch_no location seats visit_id member_id restaurant_id branch_no date score
1 1 Admiralty 10 NULL NULL NULL NULL NULL NULL
3 1 Admiralty 25 9 5 3 1 2018-04-22 8

4 2 Admiralty 100 15 7 4 2 2018-06-07 1
4 2 Admiralty 100 16 5 4 2 2018-12-04 2
4 2 Admiralty 100 17 3 4 2 2018-01-19 3

Branches in Admiralty LEFT OUTER JOIN visits

Example 3 - counting

• To count the number of visits, we must count the columns in the visits
table. Consider the following SQL query:

restaurant_id branch_no location seats visit_id member_id restaurant_id branch_no date score
1 1 Admiralty 10 NULL NULL NULL NULL NULL NULL
3 1 Admiralty 25 9 5 3 1 2018-04-22 8

4 2 Admiralty 100 15 7 4 2 2018-06-07 1
4 2 Admiralty 100 16 5 4 2 2018-12-04 2
4 2 Admiralty 100 17 3 4 2 2018-01-19 3

Branches in Admiralty LEFT OUTER JOIN visits

SELECT Branch.restaurant_id, Branch.branch_no,

COUNT(*), COUNT(visits.visit_id)

FROM Branch

LEFT OUTER JOIN visits

ON Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

WHERE Branch.location = 'Admiralty'

GROUP BY Branch.restaurant_id, Branch.branch_no

restaurant_id branch_no COUNT(*) COUNT(visits.visit_id)
1 1 1 0

3 1 1 1
4 2 3 3

This count is incorrect as the first
row is counted by “*”

Example 3 - answer name visit_count
McRonalds 0

DeliItaly 1
UltraSandwich 3

23

SELECT Restaurant.name, COUNT(visits.visit_id) AS visit_count

FROM Restaurant

INNER JOIN Branch

ON Restaurant.restaurant_id = Branch.restaurant_id

LEFT OUTER JOIN visits

ON Branch.restaurant_id = visits.restaurant_id

AND Branch.branch_no = visits.branch_no

WHERE Branch.location = 'Admiralty'

GROUP BY Branch.restaurant_id, Branch.branch_no

Exercise 3

• List all name of the members who have joined
after 2010 and find the number of visits for each
of them.

member_id name birthday joined points
1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Exercise 3

• List all name of the members who have joined after 2010 and find the number of
visits for each of them.

Please draft the corresponding SQL before you continue

Exercise 3 - answer

SELECT

Member.name,

COUNT(visits.visit_id) AS visit_count

FROM

Member

LEFT OUTER JOIN

visits

ON

Member.member_id = visits.member_id

WHERE

Member.joined > 2010

GROUP BY

Member.member_id

name visit_count
Cleo 3

Lonny 3
Ira 0

Dino 0
A. Bella 0

Example 4 – Nested query

• For any restaurant that is a cafe, or that serves light meals, find the
restaurant name and total number of seats available.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id category
1 Fast Food
1 Take Away

2 Italian
3 Cafe
3 Italian
4 Light meal

5 Cafe
5 Light meal
5 Take Away

RestaurantCategory

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

Example 4 – identifying sub-problems

• The problem could be broken down into smaller problems:
• Find all restaurants that is a cafe, or serve light meals

• Find the total number of seats of those restaurants.

SELECT restaurant_id FROM RestaurantCategory

WHERE category = 'Cafe' OR category = 'Light meal'

SELECT Restaurant.name, SUM(Branch.seats) FROM

Restaurant, Branch

WHERE Restaurant.restaurant_id = Branch.restaurant_id

GROUP BY Restaurant.restaurant_id

The first sub-problem can be used as a filter condition of the
second sub-problem

Example 4 – using IN

SELECT Restaurant.name, SUM(Branch.seats)

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id = Branch.restaurant_id

GROUP BY Restaurant.restaurant_id

SELECT restaurant_id FROM RestaurantCategory

WHERE category = 'Cafe' OR category = 'Light meal'

+

SELECT R.name, SUM(B.seats) AS total_seats

FROM Restaurant R, Branch B

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id IN (

SELECT restaurant_id FROM RestaurantCategory RC

WHERE RC.category = 'Cafe' OR RC.category = 'Light meal'

)

GROUP BY R.restaurant_id

=

name total_seats
DeliItaly 105

UltraSandwich 390
Starducks 120

Example 4 – why subquery

• It breaks the problem down into smaller ones, which is easier to
manage

• Avoid duplicated immediate results
• Can you identify the problem in the following query?

SELECT R.name, SUM(B.seats) AS total_seats

FROM Restaurant R, Branch B, RestaurantCategory RC

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id = RC.restaurant_id

AND (RC.category = 'Cafe' OR RC.category = 'Light meal')

GROUP BY R.restaurant_id

Example 4 – problem

• As there could be multiple matches in RestaurantCategory, some
restaurants is double-counted!

SELECT R.name, SUM(B.seats) AS total_seats

FROM Restaurant R, Branch B, RestaurantCategory RC

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id = RC.restaurant_id

AND (RC.category = 'Cafe' OR RC.category = 'Light meal')

GROUP BY R.restaurant_id

restaurant_id name category
3 DeliItaly Cafe

4 UltraSandwich Light meal
5 Starducks Cafe
5 Starducks Light meal

Restaurant INNER JOIN RestaurantCategory
filtered by “Cafe” and “Light meal”

restaurant_id category
1 Fast Food
1 Take Away

2 Italian
3 Cafe
3 Italian
4 Light meal

5 Cafe
5 Light meal
5 Take Away

RestaurantCategory

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

name SUM(Branch.seats)
DeliItaly 105

UltraSandwich 390
Starducks 240

Example 4 – other choices (FROM clause)

SELECT Restaurant.name, SUM(Branch.seats)

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id = Branch.restaurant_id

GROUP BY Restaurant.restaurant_id

SELECT DISTINCT restaurant_id FROM RestaurantCategory

WHERE category = 'Cafe' OR category = 'Light meal'

+

SELECT R.name, SUM(B.seats) AS total_seats

FROM Restaurant R, Branch B, (

SELECT DISTINCT restaurant_id FROM RestaurantCategory RC

WHERE RC.category = 'Cafe' OR RC.category = 'Light meal'

) R2

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id = R2.restaurant_id

GROUP BY R.restaurant_id

=

Use DISTINCT keyword to ensure
that there is no duplicated records

Must use alias for sub-query

Example 4 – Other choice (EXISTS)

SELECT Restaurant.name, SUM(Branch.seats)

FROM Restaurant, Branch

WHERE Restaurant.restaurant_id = Branch.restaurant_id

GROUP BY Restaurant.restaurant_id

SELECT restaurant_id FROM RestaurantCategory

WHERE category = 'Cafe' OR category = 'Light meal'

+

SELECT R.name, SUM(B.seats) AS total_seats

FROM Restaurant R, Branch B

WHERE R.restaurant_id = B.restaurant_id

AND EXISTS (

SELECT restaurant_id FROM RestaurantCategory RC

WHERE (RC.category = 'Cafe' OR RC.category = 'Light meal')

AND R.restaurant_id = RC.restaurant_id

)

GROUP BY R.restaurant_id

=

EXISTS will check the subquery for
EACH of the matches in the main query.

Sub-query must correlates to the main query so that every time
the sub-query is checked, the corresponding record is checked.

+

Example 4 - answer
SELECT R.name, SUM(B.seats) AS total_seats FROM Restaurant R, Branch B

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id IN (

SELECT restaurant_id FROM RestaurantCategory RC

WHERE (RC.category = 'Cafe' OR RC.category = 'Light meal')

)

GROUP BY R.restaurant_id

SELECT R.name, SUM(B.seats) AS total_seats FROM Restaurant R, Branch B

WHERE R.restaurant_id = B.restaurant_id

AND EXISTS (

SELECT restaurant_id FROM RestaurantCategory RC

WHERE (RC.category = 'Cafe' OR RC.category = 'Light meal')

AND R.restaurant_id = RC.restaurant_id

)

GROUP BY R.restaurant_id

SELECT R.name, SUM(B.seats) AS total_seats FROM Restaurant R, Branch B, (

SELECT DISTINCT restaurant_id FROM RestaurantCategory RC

WHERE (RC.category = 'Cafe' OR RC.category = 'Light meal')

) R2

WHERE R.restaurant_id = B.restaurant_id

AND R.restaurant_id = R2.restaurant_id

GROUP BY R.restaurant_id

Sub-query as condition

Sub-query as temporary table

Correlated sub-query

Exercise 4

• Find the average score of all visits given
by each of the members, who have ever

visited Starducks.

member_id name birthday joined points
1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

Exercise 4

• Find the average score of all visits given by each of the members, who have ever
visited Starducks.

Please draft the corresponding SQL before you continue

Exercise 4 - answer
SELECT

M.name,

AVG(V.score) AS average_score

FROM

Member M,

visits V

WHERE

M.member_id = V.member_id AND M.member_id IN(

SELECT

V.member_id

FROM

visits V

WHERE

V.restaurant_id IN(

SELECT

restaurant_id

FROM

Restaurant

WHERE NAME

= 'Starducks'

)

)

GROUP BY

M.member_id

name average_score

Todd 3.3333

Lonny 3.3333
Keith 5.2500
Royce 3.0000

You are encouraged to try
other methods to achieve the
same result

Example 5 – nested query

• Find the average score of the

restaurant(s) with the greatest number of
branches.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5

2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Example 5 – sub queries

• The problem could be broken down as follow.
• Find the number of branches of restaurant

• Find the restaurants that has the maximum number of branches

• Find the average score of those restaurants

SELECT restaurant_id, COUNT(*) FROM Branch

GROUP BY restaurant_id

SELECT restaurant_id FROM Branch GROUP BY restaurant_id

HAVING COUNT(*) >= ALL(…find count…)

SELECT restaurant_id, AVG(score) FROM visits

WHERE restaurant_id IN (…find list of restaurants…)

GROUP BY restaurant_id

Example 5 – answer
SELECT restaurant_id, COUNT(*) FROM Branch

GROUP BY restaurant_id

SELECT restaurant_id FROM Branch GROUP BY restaurant_id

HAVING COUNT(*) >= ALL(…find count…)

SELECT restaurant_id, AVG(score) FROM visits

WHERE restaurant_id IN (…find list of restaurants…)

GROUP BY restaurant_id

+

+

SELECT R.restaurant_id, AVG(score) AS average_score

FROM Restaurant R, visits V

WHERE R.restaurant_id = V.restaurant_id

AND R.restaurant_id IN (

SELECT restaurant_id FROM Branch B GROUP BY restaurant_id

HAVING COUNT(*) >= ALL(

SELECT COUNT(*) FROM Branch GROUP BY restaurant_id

)

)

GROUP BY R.restaurant_id

=

restaurant_id average_score
3 5.6250

4 3.0000

Exercise 5

• Find the number of visits by each
member, who has given the greatest

number of scores that are less than or
equals to 5.

member_id name birthday joined points

1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

Exercise 5

• Find the number of visits by each member, who has given the greatest number of
scores that is less than or equals to 5.

Please draft the corresponding SQL before you continue

Exercise 5 – answer
SELECT

M.name, COUNT(*) AS visit_count

FROM

Member M, visits V

WHERE

M.member_id = V.member_id AND M.member_id IN(

SELECT

member_id

FROM

visits

WHERE

score <= 5

GROUP BY

member_id

HAVING

COUNT(*) >= ALL(

SELECT

COUNT(*)

FROM

visits

WHERE

score <= 5

GROUP BY

member_id

)

)

GROUP BY

M.member_id

name visit_count
Cleo 3

Evan 3

Note that these two parts must
have the same conditions as
we are comparing the count to
the max count under the same
condition.

Note that these two parts must
have the same conditions as
we are comparing the count to
the max count under the same
condition.

G&A Game Question 1
• Find the latest visits by the member(s) who has

given the greatest number of scores less than or

equals to 5.
• Show the name of restaurant, the location of the

branch, as well as the member name.
• Assume a member will not visit the same branch twice

on the same date.
member_id name birthday joined points

1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

G&A Game Question 2

46

Consider the following relation instances R(A,B,C) and S(B,C,D).

Which of the following queries will output 4 as query result?

I. SELECT COUNT(*) FROM R,S WHERE R.C=S.C and S.D=1
II. SELECT COUNT(*) FROM R WHERE R.A NOT IN (SELECT S.D FROM S WHERE S.B<3)
III. SELECT SUM(1) FROM R LEFT OUTER JOIN S ON R.B=S.B WHERE R.B > 1
IV. SELECT SUM(2) FROM R RIGHT OUTER JOIN S ON R.A=S.B WHERE S.C > 1

A. i only B. ii only C. i and ii only D. i, ii and iii E. all of them
E. None of the above options.

G&A Game Question 3

48

Consider the following relational tables that stores the recipes of dishes

Give the SQL: For each dish, list the dish_name and the total calories of the dish.

Advanced SQL

50

Table Schemas

51

• Restaurant (restaurant_id, name))

• RestaurantCategory (restaurant_id, category)

• Foreign key: {restaurant_id} references Restaurant

• Branch (restaurant_id, branch_no, location, seats)

• Foreign key: {restaurant_id} references Restaurant

• Member (member_id, name, birthday, joined, points)

• (joined is the year the member joined)

• visits (visit_id, member_id, restaurant_id, branch_no, date, score)

• Foreign keys: {restaurant_id, branch_no} references Branch,
{member_id} references Member

52

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks
Restaurant

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

restaurant_id category
1 Fast Food
1 Take Away

2 Italian
3 Cafe
3 Italian
4 Light meal

5 Cafe
5 Light meal
5 Take Away

RestaurantCategory

visit_id member_id restaurant_id branch_no date score

1 1 4 3 2015-12-30 5

2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5
20 2 3 3 2018-11-25 5
21 6 3 3 2018-07-27 4

visits

member_id name birthday joined points

1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Member

Group Discussion (20min)
1. Find all branches with at least one visit scoring less than 4.

• List the restaurant name, the branch location, and the best score among the visits to the branch.
• Order the list by the restaurant name, and then the location.

2. Find all members who has visited the restaurant branch(/branches) that received the
lowest average score ever.
• Show only the member name, order by the member name.

3. [Most difficult] Find all members who have made at least two visits, show only the member
name, the name of the restaurant of the member’s first visit, and that of the last visit.
• Show any of the restaurant names if the member visited more than one restaurant on the same day.
• Order the list by the member name.
• Show only the first 5 results.

4. Count the number of unique members visiting each of the restaurants. List the result by
showing the restaurant name, and the number of members. A restaurant should be listed
even if it is not visited by any member, in that case the count should be zero. Order the list
by the number of unique members (descending), then by restaurant name.

53

