
Structured Query

Language (basic)

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A

Introduction to Database Management Systems

Acknowledgement: Dr. Chui Chun Kit

Lecture 4

Outcome based learning (OBL)

Outcome 1. Information Modeling

Outcome 2. Query Languages

Outcome 3. System Design

Outcome 4. Application Development

Able to understand the modeling of real life information in a database
system.

Able to understand and use the languages designed for data access.

Able to understand the design of an efficient and reliable database
system.

Able to implement a practical application on a real database.
2

Recap

3

Let's consider the following steps in developing a
database application in a banking enterprise.

branch_id

branch loan
loan-

branch

name

asset
loan_idamount

Step 1. Information modeling

account-
branch borrower

customeraccount owner

account_id

balance

customer_id

name

address

Recap

4

Step 2. Reduce to database table definitions

Recap

6

Step 3. Create the database and tables

Step 4. Design the SQL to access data for the
application

Step 5. Relational Algebra optimizes SQL (DBMS does
this automatically). We’ll learn its basic concepts.

Running example

7

customer_id loan_id

C1 L3

C4 L2

C2 L1

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

customer_id

C1

C2

C2

C4

C4

Account CustomerOwner

BorrowerLoanBranch

account_id

A1

A1

A2

A3

A4

branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

customer_id

C1

C2

C3

C4

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Foreign key Foreign key

Foreign
key

Foreign key
Foreign

key

Foreign
key

What is SQL?

8

Language for defining, modifying and querying data
in an RDBMS.

Structured Query Language (pronounced as “sequel”)

SQL has many standards and implementations

Read the documentation on which features are supported
exactly.

SQL is declarative

Concerns about the task we want to accomplish, without
specifying how.

Create and

Drop Table

Section 1

Create table

A database table is defined using the CREATE TABLE
command.

10

CREATE TABLE Branch
(

branch_id VARCHAR(15) NOT
NULL,

name VARCHAR(30) NOT NULL,
asset INT UNSIGNED NOT NULL,
PRIMARY KEY(branch_id)

);

Column type
Column name

Table name (cannot be a keyword
in database, e.g., Create)

Constraint (Primary Key),
optional in this statement,
can add back later using
the ALTER TABLE
command.

PRIMARY KEY
automatically ensures
NOT NULL.

No comma in the
last instruction.

NOT NULL means
each record's
value in the
column must not
be a null value.

Drop table

11

DROP TABLE deletes all information about the
dropped table from the database.

DROP TABLE Branch;

customer_id loan_id

C1 L3

C4 L2

C2 L1

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

customer_id

C1

C2

C3

C4

The DBMS may reject the DROP TABLE instruction when
the table is referenced by another table via some
constraints (e.g., referential constraints).

Customer Borrower

Foreign key

After the foreign key is established,
if we drop the Customer table, the
records in the Borrower table will
lost their references .
(i.e., Cannot find out who borrow
the loan anymore.)

Alter table

12

ALTER TABLE can be used to

Add columns to an existing table.

ALTER TABLE Branch ADD branch_phone INT (12);

Remove a column from a table.

ALTER TABLE Branch DROP branch_phone;

Add constraints (e.g., PRIMARY KEY) to a table.

ALTER TABLE Branch ADD PRIMARY KEY (branch_id);

Foreign key constraints

A foreign key is a referential constraint between
two tables.

13

The columns in the referencing table must reference
the columns of the primary key or other superkey in
the referenced table.

i.e., The value in one row of the referencing columns must occur in a
single row in the referenced table. The referencing columns must be
primary/candidate key of another table. The referencing table
cannot contain record that doesn’t exist in the referenced table.

customer_id

C1

C2

C3

Owner

AccountCustomer

Foreign key account_id
references
Account(account_id)

Foreign key customer_id
references
Customer(customer_id)

account_id

A1

A1

A3

Referencing columns Referenced tableReferenced table

Foreign key constraints

The foreign key can be established in the CREATE
TABLE command.

The foreign key can also be defined using the ALTER
TABLE command.

ALTER TABLE Owner
ADD FOREIGN KEY (customer_id) REFERENCES Customer(customer_id);

CREATE TABLE Owner
(

customer_id VARCHAR(15),
account_id VARCHAR(15),
PRIMARY KEY(customer_id, account_id),
FOREIGN KEY(customer_id) REFERENCES Customer(customer_id),
FOREIGN KEY(account_id) REFERENCES Account(account_id)

);

14

Section 2

Insert, Delete

and Update

The INSERT clause

The INSERT INTO command is used to insert records
(tuples) into the database table.

17

INSERT INTO Branch VALUES ('B1' , 'Central', 7100000);

Table name (Case sensitive)

Value in the
first column

Value in the
second column

Value in the
third column

branch_id name asset

Empty

Branch

branch_id name asset

B1 Central 7100000

Branch

Inserting multiple records

INSERT INTO Branch VALUES
('B2' , 'Causeway Bay', 9000000),
('B3' , 'Aberdeen', 400000);

The INSERT clause

Most DBMS provide an alternative way to insert large
amount of records into a table.

18

LOAD DATA LOCAL INFILE 'text.txt'
INTO TABLE Branch
FIELDS TERMINATED BY ';'
LINES TERMINATED BY '\n';

text.txt

B1;Central;7100000
B2;Causeway Bay;9000000
B3;Aberdeen;400000
B4; North Point;3700000
…

E.g., LOAD DATA LOCAL INFILE in MySQL.

The DELETE clause

The DELETE FROM command is used to delete records
(tuples) from a database table.

19

DELETE FROM Branch;

branch_id name asset

B1 Central 7100000

B2 Causeway Bay 9000000

B3 Aberdeen 400000

B4 North Point 3700000

Branch

Query: Delete all records from the Branch table.

branch_id name asset

Empty

Branch

The DELETE clause

The DELETE FROM command is used to delete records
(tuples) from a database table.

20

DELETE FROM Branch WHERE name = 'Central';

The tuples that satisfy the conditions specified here are deleted.

branch_id name asset

B1 Central 7100000

B2 Causeway Bay 9000000

B3 Aberdeen 400000

B4 North Point 3700000

Branch

Query: Delete the branch “Central” from the Branch table.

Branch

branch_id name asset

B2 Causeway Bay 9000000

B3 Aberdeen 400000

B4 North Point 3700000

The UPDATE clause

The UPDATE command is used to update records
(tuples) from a database table.

21

UPDATE Branch
SET asset = 0
WHERE branch_id = 'B1';

Query: Update the asset of branch with branch_id 'B1' to $0.

branch_id name asset

B1 Central 7100000

B2 Causeway Bay 9000000

B3 Aberdeen 400000

B4 North Point 3700000

Branch

branch_id name asset

B1 Central 0

B2 Causeway Bay 9000000

B3 Aberdeen 400000

B4 North Point 3700000

Branch

The UPDATE clause

The UPDATE command can also be used with
arithmetic expressions.

22

UPDATE Account
SET balance = balance * 1.06
WHERE balance > 500;

Query: Increase all accounts with balances over $500 by 6%.

account_id branch_id balance

A1 B1 500

A2 B2 400

A3 B2 900

A4 B1 700

Account

account_id branch_id balance

A1 B1 500

A2 B2 400

A3 B2 954

A4 B1 742

Account

The UPDATE clause

The UPDATE command can also be used with
arithmetic expressions.

23

UPDATE Account
SET balance = balance * 1.05
WHERE balance < 500;

Query: Increase all accounts with balances under $500
by 5% and all other accounts by 6%.

account_id branch_id balance

A1 B1 500

A2 B2 400

A3 B2 900

A4 B1 700

Account

account_id branch_id balance

A1 B1 530

A2 B2 420

A3 B2 954

A4 B1 742

Account

UPDATE Account
SET balance = balance * 1.06
WHERE balance >= 500;

The order of executing these two is important!

The UPDATE clause

The CASE command can be used to perform
conditional update.

24

UPDATE Account
SET balance = CASE
WHEN balance <=500 THEN balance *1.05
ELSE balance * 1.06
END

Note: When there are multiple
WHEN … THEN in the query, only
the first true statement (from
top to bottom) will be executed.

Querying

Section 3

The SELECT clause

The SELECT clause lists the attributes desired in the
result of a query.

Query: Find the names of all customers.

26

SELECT name FROM Customer;

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

name

Kit

Ben

Jolly

Yvonne

Result

An asterisk in the select clause denotes “all attributes”

Query: List all column values of all customer records.

SELECT * FROM Customer;

The SELECT clause

The SELECT clause can contain arithmetic
expressions (+, –, *, /) operating on constants or
attributes of tuples.

27

Query: List the loan_id and amount of each loan record,
display the amount in USD (originally stored in HKD).

loan_id branch_id amount

L1 B3 900

L2 B2 1500

L3 B1 1000

Loan

SELECT loan_id, amount/7.8
FROM Loan;

loan_id amount /7.8

L1 115.385

L2 192.308

L3 128.205

Loan

The FROM clause

The FROM clause lists the relations (tables) involved in
the query.

Query: Find the Cartesian product of Customer and Borrower

SELECT *
FROM Customer, Borrower;

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower

customer_id name address customer_id loan_id

Cartesian product
of A and B means
generate all
possible pairs of
records from A
and B.

Cartesian product of Customer and Borrower 28

The FROM clause

The FROM clause lists the relations (tables) involved in
the query.

Query: Find the Cartesian product of Customer and Borrower

SELECT *
FROM Customer, Borrower;

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower

customer_id name address customer_id loan_id

C1 Kit CB320 C1 L3

Cartesian product
of A and B means
generate all
possible pairs of
records from A
and B.

Cartesian product of Customer and Borrower 29

The FROM clause

The FROM clause lists the relations (tables) involved in
the query.

Query: Find the Cartesian product of Customer and Borrower

SELECT *
FROM Customer, Borrower;

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower

customer_id name address customer_id loan_id

C1 Kit CB320 C1 L3

C2 Ben CB326 C1 L3

Cartesian product
of A and B means
generate all
possible pairs of
records from A
and B.

Cartesian product of Customer and Borrower 30

The FROM clause

The FROM clause lists the relations (tables) involved in
the query.

Query: Find the Cartesian product of Customer and Borrower

SELECT *
FROM Customer, Borrower;

customer_id name address customer_id loan_id

C1 Kit CB320 C1 L3

C2 Ben CB326 C1 L3

C3 Jolly CB311 C1 L3

C4 Yvonne CB415 C1 L3

C1 Kit CB320 C4 L2

C2 Ben CB326 C4 L2

C3 Jolly CB311 C4 L2

C4 Yvonne CB415 C4 L2

C1 Kit CB320 C2 L1

C2 Ben CB326 C2 L1

C3 Jolly CB311 C2 L1

C4 Yvonne CB415 C2 L1

Cartesian product of Customer and Borrower

Cartesian product is the most primitive way
of joining two tables. However, many
resulting tuples are not very useful.
Therefore, we often need to specify the
joining condition to filter out the non-
meaningful results.

31

The WHERE clause

The WHERE clause specifies conditions that the result
must satisfy.

32

Query: For each loan, find out the name of the customer who
borrow the loan.

Let us learn the process of
constructing the SQL for this query.

Step 1. What are the table(s) that contain
the information to answer this query?

The WHERE clause

The WHERE clause specifies conditions that the result
must satisfy.

33

Query: For each loan, find out the name of the customer who
borrow the loan.

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower
Observation 1.
First, the information of customers (customer_id)
who borrow loan is in the Borrower table.

Observation 2.
Second, we need to find out the name of the
customer, the name is in the Customer table.

33

Step 2. Now we want to relate
two tables, if no conditions is
specified, Cartesian product
will be returned. What is the
joining condition?

The WHERE clause

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower

SELECT Borrower.loan_id, Customer.name
FROM Customer, Borrower

customer_id name address customer_id loan_id

C1 Kit CB320 C1 L3

C2 Ben CB326 C1 L3

C3 Jolly CB311 C1 L3

C4 Yvonne CB415 C1 L3

C1 Kit CB320 C4 L2

C2 Ben CB326 C4 L2

C3 Jolly CB311 C4 L2

C4 Yvonne CB415 C4 L2

C1 Kit CB320 C2 L1

C2 Ben CB326 C2 L1

C3 Jolly CB311 C2 L1

C4 Yvonne CB415 C2 L1

Cartesian product of Customer and Borrower 34

The WHERE clause

customer_id loan_id

C1 L3

C4 L2

C2 L1

customer_id name address

C1 Kit CB320

C2 Ben CB326

C3 Jolly CB311

C4 Yvonne CB415

Customer

Borrower

customer_id name address customer_id loan_id

C1 Kit CB320 C1 L3

C2 Ben CB326 C1 L3

C3 Jolly CB311 C1 L3

C4 Yvonne CB415 C1 L3

C1 Kit CB320 C4 L2

C2 Ben CB326 C4 L2

C3 Jolly CB311 C4 L2

C4 Yvonne CB415 C4 L2

C1 Kit CB320 C2 L1

C2 Ben CB326 C2 L1

C3 Jolly CB311 C2 L1

C4 Yvonne CB415 C2 L1

Cartesian product of Customer and Borrower

SELECT Borrower.loan_id, Customer.name
FROM Customer, Borrower
WHERE Customer.customer_id =
Borrower.customer_id

loan_id name

L3 Kit

L2 Yvonne

L1 Ben

Result

35

The WHERE clause

The WHERE clause specifies conditions that the result
must satisfy.

36

Query: Find all loan ID of loans made at branch_id B1 with
loan amounts >$1200.

SELECT loan_id
FROM Loan
WHERE branch_id = 'B1' AND

amount > 1200;

loan_id

L2

Result

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

Loan

Comparison results can be combined using logical
connectives AND, OR, and NOT.

There are two
conditions in the query!

customer_id loan_id

C1 L3

C4 L2

C2 L1

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

customer_id

C1

C2

C3

C4

C4

Account CustomerOwner

BorrowerLoanBranch

account_id

A1

A1

A3

A4

A5

branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

customer_id

C1

C2

C3

C4

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Exercise

Query: Find the names of all branches that have a loan.

37

Query: Find the names of all branches that have a loan.

Step 1. Identify the tables that contain the necessary
information to answer the query.

SELECT ?
FROM Branch, Loan
WHERE ?
;

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

LoanBranch
branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

Exercise

Step 2. Construct the SELECT statement.

38

Query: Find the names of all branches that have a loan.

Step 1. Identify the tables that contain the necessary
information to answer the query.

Step 2. Construct the SELECT statement.

SELECT Branch.name
FROM Branch, Loan
WHERE ?
;

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

LoanBranch
branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

Exercise

39

Query: Find the names of all branches that have a loan.

Step 1. Identify the tables that contain the necessary
information to answer the query.

Step 2. Construct the SELECT statement.

SELECT Branch.name
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

Usually, when linking
the information of
two tables, we need
to specify the joining
condition. Often we
need to join the
columns that
participate in the
referential constraint
between the two
tables.

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

LoanBranch
branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

Joining condition

Exercise

40

Query: Find the names of all branches that have a loan.

Step 1. Identify the tables that contain the necessary
information to answer the query.

Step 2. Construct the SELECT statement.

SELECT Branch.name
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

LoanBranch
branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

name

Central

Central

Aberdeen

Result

Duplicate values
return!

Exercise

41

Query: Find the names of all branches that have a loan.

Step 1. Identify the tables that contain the necessary
information to answer the query.

Step 2. Construct the SELECT statement.

SELECT DISTINCT Branch.name
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

name asset

Central 7100000

Causeway Bay 9000000

Aberdeen 400000

North Point 3700000

LoanBranch
branch_id

B1

B2

B3

B4

branch_id

B3

B1

B1

amount

900

1500

1000

loan_id

L1

L2

L3

name

Central

Aberdeen

Result

You can eliminate duplicate
values in the results by using
the DISTINCT keyword.

Duplicate values
return!

Exercise

42

Renaming

Section 4

SELECT DISTINCT Branch.name
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

Renaming

Rename can be operated on
both tables and attributes.

44

name

Central

Aberdeen

Result

SELECT DISTINCT Branch.name AS 'Branch name'
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

Branch name

Central

Aberdeen

Result

Rename on attribute.
We use the keyword AS to signify renaming.

I want to rename the
column “name” in the
result into “Branch
name”.

SELECT DISTINCT Branch.name
FROM Branch, Loan
WHERE Branch.branch_id = Loan.branch_id
;

Renaming

Rename can be operated on
both tables and attributes.

45

name

Central

Aberdeen

Result

Rename on tables.

SELECT DISTINCT B.name
FROM Branch B, Loan L
WHERE B.branch_id = L.branch_id
;

name

Central

Aberdeen

Result

The two SQLs are
equivalent to each other.

String operations

Section 5

The LIKE clause

47

The most commonly used operation on strings is
pattern matching using LIKE.

Percent(%):matches any substring.

Underscore(_): matches any character.

'Perry%' matches any string beginning with “Perry”.

'_ _ _ %' matches any string of at least 3 characters.

Note: Patterns are case sensitive.

The LIKE clause

Query: Find the names of all customers whose
address includes the substring '320'.

48

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

Customer

customer_id

C1

C2

C3

C4

SELECT name
FROM Customer
WHERE address LIKE '%320%';

name

Kit

Result

Question: How about matching using
regular expression? ☺

https://dev.mysql.co
m/doc/refman/8.0/e
n/pattern-
matching.html

https://dev.mysql.com/doc/refman/8.0/en/pattern-matching.html

49

WHERE name LIKE 'a%' Finds any values that start with "a"

WHERE name LIKE '%a' Finds any values that end with "a"

WHERE name LIKE '%or%' Finds any values that have "or" in any
position

WHERE name LIKE '_r%' Finds any values that have "r" in the
second position

WHERE name LIKE 'a__%' Finds any values that start with "a"
and are at least 3 characters in length

WHERE name LIKE 'a%o' Finds any values that start with "a"
and ends with "o"

The LIKE clause

Ordering results

Section 6

The ORDER BY clause

The ORDER BY clause list the result in sorted order.

Query: List the names of all customers in alphabetic order.

51

SELECT name
FROM Customer

ORDER BY name ASC;

name address

Kit CB320

Ben CB326

Jolly CB311

Yvonne CB415

Customer

customer_id

C1

C2

C3

C4

Result

name

Ben

Jolly

Kit

Yvonne

Use DESC for descending order, and ASC for ascending
order. Default: ascending

SELECT name
FROM Customer
ORDER BY name DESC;

Result

name

Yvonne

Kit

Jolly

Ben

The ORDER BY clause

The ORDER BY clause list the result in sorted order.

Query: List the loan records in ascending order of the
branch_id, if two tuples having the same branch_id,
order by their loan amount in descending order.

52

SELECT *
FROM Loan
ORDER BY branch_id ASC,

amount DESC;

Intermediate Result

branch_id loan_id Amount

B1 L3 1000

B1 L5 1500

B3 L1 900

Loan
branch_id

B3

B1

B1

amount

900

1000

1500

loan_id

L1

L3

L5

branch_id loan_id Amount

B1 L2 1500

B1 L3 1000

B3 L1 900

Final Result

Section 7

Simple Nested

Query

The IN clause

The IN clause allows you to specify discrete values in
the WHERE search criteria.

Query: Find the customer_id of all customers who
have both an account and a loan.

54

SELECT DISTINCT customer_id
FROM Borrower
WHERE customer_id IN

(SELECT customer_id FROM Owner);

customer_id loan_id

C1 L3

C4 L2

C2 L1

Borrower
customer_id

C1

C2

C2

Owner
account_id

A1

A1

A2

customer_id

C1

C2

Result

The result of
this sub-query
is {C1,C2,C2}.

The IN clause

The IN clause allows you to specify discrete values in
the WHERE search criteria.

Query: Find the customer_id of all customers who
have a lone but not having an account.

55

SELECT DISTINCT customer_id
FROM Borrower
WHERE customer_id NOT IN

(SELECT customer_id FROM Owner);

customer_id loan_id

C1 L3

C4 L2

C2 L1

Borrower
customer_id

C1

C2

C2

Owner
account_id

A1

A1

A2

customer_id

C4

Result

The result of
this sub-query
is {C1,C2,C2}.

Aggregation

Section 8

Aggregate functions

Aggregation functions take a collection of values as
input and return a single value..

57

Account

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Query: Find the average balance of all accounts at
the branch with branch_id 'B2'.

SELECT AVG(balance)
FROM Account
WHERE branch_id = 'B2';

AVG (balance)

650.0000

Result

Aggregate functions

Aggregation functions.

58

AVG

MIN

MAX

SUM

COUNT

The GROUP BY clause

Aggregation function can be applied to a group of sets
of tuples by using GROUP BY clause.

59

Account

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Query: Find the average balance at each branch.

branch_id account_id balance

B1
A1 500

A4 700

B2
A2 400

A3 900

Step1. Grouping
GROUP BY branch_id

The GROUP BY clause

Aggregation function can be applied to a group of sets
of tuples by using GROUP BY clause.

60

Account

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Query: Find the average balance at each branch.

SELECT branch_id, AVG(balance)
FROM Account
GROUP BY branch_id;

branch_id AVG (balance)

B1 600.0000

B2 650.0000

Result

branch_id account_id balance

B1
A1 500

A4 700

B2
A2 400

A3 900

Step1. Grouping
GROUP BY branch_id

Step2. Aggregation
AVG(balance)

The HAVING clause

It is useful to state a condition that applies to groups
rather than to tuples.

61

Account

branch_id

B1

B2

B2

B1

balance

500

400

900

700

account_id

A1

A2

A3

A4

Query: Find the branches where the average account
balance is no less than $650.

SELECT branch_id, AVG(balance)
FROM Account
GROUP BY branch_id
HAVING AVG(balance) >= 650;

branch_id AVG (balance)

B1 600.0000

B2 650.0000

branch_id account_id balance

B1
A1 500

A4 700

B2
A2 400

A3 900

branch_id AVG (balance)

B2 650.0000

Result

Step3. Filtering
(Having AVG(balance) >= 650)

Join

Section 9

Join

A join takes 2 tables as input and returns a table.

department_id d_name

31 CS

33 Civil

34 ME

35 EEE

DepartmentEmployee
e_name department_id

Kit 31

Ben 33

John 33

Jolly 34

Yvonne 34

David NULL

SELECT *
FROM Employee E, Department D
WHERE E.department_id =

D.department_id;

e_name E.department_id D.department_id d_name

Kit 31 31 CS

Ben 33 33 Civil

John 33 33 Civil

Jolly 34 34 ME

Yvonne 34 34 ME

Result

Cartesian product, then
E.department_id = D.department_id

63

The OUTER JOIN clause

An outer join does not require each record in the two
joined tables to have a matching record.

SELECT *
FROM Employee E LEFT OUTER JOIN
Department D
ON E.department_id =
D.department_id;

e_name E.department_id D.department_id d_name

Kit 31 31 CS

Ben 33 33 Civil

John 33 33 Civil

Jolly 34 34 ME

Yvonne 34 34 ME

David NULL NULL NULL

Result

department_id d_name

31 CS

33 Civil

34 ME

35 EEE

DepartmentEmployee
e_name department_id

Kit 31

Ben 33

John 33

Jolly 34

Yvonne 34

David NULL

Even if the LEFT table record does not
have matching records in the RIGHT
table, we still output the tuple in the
LEFT table (with null values for the
columns of the RIGHT table).

64

The OUTER JOIN clause

An outer join does not require each record in the two
joined tables to have a matching record.

SELECT *
FROM Employee E RIGHT OUTER JOIN
Department D
ON E.department_id =
D.department_id;

e_name E.department_id D.department_id d_name

Kit 31 31 CS

Ben 33 33 Civil

John 33 33 Civil

Jolly 34 34 ME

Yvonne 34 34 ME

NULL NULL 35 EEE

Result

department_id d_name

31 CS

33 Civil

34 ME

35 EEE

DepartmentEmployee
e_name department_id

Kit 31

Ben 33

John 33

Jolly 34

Yvonne 34

David NULL

Even if the RIGHT table record does
not have matching records in the LEFT
table, we still output the tuple in the
RIGHT table (with null values for the
columns of the LEFT table).

65

Here are the different types of the JOINs in SQL:

•(INNER) JOIN: Returns records that have matching
values in both tables

•LEFT (OUTER) JOIN: Returns all records from the left
table, and the matched records from the right table

•RIGHT (OUTER) JOIN: Returns all records from the right
table, and the matched records from the left table

•FULL (OUTER) JOIN: Returns all records when there is a
match in either left or right table

An Example

Section 10 More on SQL

67

Set operations

More on nested queries

Null values

Views

Authorization

Assertion

Other SQL constructs

Example

departmentemployee

name salary

employee_id

works_in

since department_id

namebudget

Before we proceed to learning more
SQL constructs, lets have a revision
on what we have learned up to this
chapter.

Step 1. Information modeling.

68

Example

department

department_id

name

employee

name salary

employee_id

works_in

since

budget

Step 1. Information modeling

Step 2. Reduce to database tables
Employees (employee_id, name, salary)
Foreign key : none.

Departments (department_id, name, budget)
Foreign key : none.

Works_in(employee_id, department_id, since)
Foreign key : employee_id REFERENCES Employee (employee_id).

department_id REFERENCES Department (department_id).
69

Example

70

Step 3. Create the database
CREATE TABLE Employees (

employee_id INT(12),
name VARCHAR(30) NOT NULL,
salary INT UNSIGNED NOT NULL,
PRIMARY KEY(employee_id)

)ENGINE = INNODB;

CREATE TABLE Departments (
department_id INT(12),
name VARCHAR(30) NOT NULL,
budget INT UNSIGNED NOT NULL,
PRIMARY KEY(department_id)

) ENGINE = INNODB;

CREATE TABLE Works_in(
employee_id INT(12),
department_id INT(12),
since DATE NOT NULL,
PRIMARY KEY(employee_id, department_id),
FOREIGN KEY (employee_id) REFERENCES Employees (employee_id),
FOREIGN KEY (department_id) REFERENCES Departments (department_id)

) ENGINE = INNODB;

INNODB storage engine,
just for MySQL to support
foreign key constraints.

Example

71

Step 3. Create the database

INSERT INTO Employees VALUES (1, 'Jones', 26000);
INSERT INTO Employees VALUES (2, 'Smith', 28000);
INSERT INTO Employees VALUES (3, 'Parker', 35000);
INSERT INTO Employees VALUES (4, 'Smith', 24000);

INSERT INTO Departments VALUES (1, 'Toys', 122000), (2, 'Tools', 239000), (3, 'Food', 100000);

INSERT INTO Works_in VALUES (1, 1, '2001-1-1'), (2, 1, '2002-4-1'), (2, 2, '2005-2-2'), (3, 3,
'2003-1-1'), (4, 3, '2005-1-1');

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Example

72

Step 4. Design the SQL to access data for the
application

Query 1: Find the names of all employees and remove
duplicates.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

74

Query 2: Find the employee_ids and names of employees who
work in department with department_id=2.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

77

Query 3: Find the dept. names where employee with
employee_id = 2 works.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

80

Query 4: Find the dept. ids where employees named Smith
work.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

83

Query 5: Find the dept. names where employees named
Smith work.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

87

Query 6: Find the names of departments which have an
employee named Smith and their budget is greater than 100000.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

91

Query 7: Find the budgets of departments, who employ an
employee called ‘Smith’ .

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

95

Query 8: For each department, find the total number of
employees it employs.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

97

Query 9: Find the dept. names with at least 2 employee.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

101

Query 10: Find the employee_id of all employees whose name
includes the substring “one”.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

103

Query 11: Find the employee_id and name of the employees
who worked in the departments with budget more than
100,000.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

107

Query 12: Find the name and budget of the department with
the greatest budget.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

110

Query 13: Find the names of employees who work in at least 2
departments.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

113

Query 14: In each department, find the highest salary of the
employee in that department.

Employees DepartmentsWorks_in

employee_id name salary

1 Jones 26000

2 Smith 28000

3 Parker 35000

4 Smith 24000

department_id name budget

1 Toys 122000

2 Tools 239000

3 Food 100000

employee_id department_id since

1 1 2001-1-1

2 1 2002-4-1

2 2 2005-2-2

3 3 2003-1-1

4 3 2005-1-1

Exercises

Q&A Game

• Restaurant (restaurant_id, name)

• RestaurantCategory (restaurant_id, category)

• Foreign key: {restaurant_id} references Restaurant

• Branch (restaurant_id, branch_no, location, seats)

• Foreign key: {restaurant_id} references Restaurant

• Member (member_id, name, birthday, joined, points)

• (joined is the year the member joined)

• Visits (visit_id, member_id, restaurant_id, branch_no, date, score)

• Foreign keys:{restaurant_id, branch_no} references Branch,
{member_id} references Member

Please read the below table schemas and answer four SQL questions.

restaurant_id name
1 McRonalds

2 PizzaHub
3 DeliItaly
4 UltraSandwich

5 Starducks

restaurant_id branch_no location seats
1 1 Admiralty 10

1 2 Central 20
2 1 Causeway Bay 5
3 1 Admiralty 25
3 2 Wan Chai 45
3 3 Causeway Bay 35
4 1 Central 170

4 2 Admiralty 100
4 3 North Point 120
5 1 Central 80
5 2 Wan Chai 40

Branch

member_id name birthday joined points
1 Cleo 1983-09-25 2017 690

2 Evan 1988-03-28 1989 130
3 Todd 1966-06-22 1967 190
4 Lonny 1973-04-05 2016 10
5 Keith 1991-06-19 1992 380
6 Royce 1965-06-14 2006 300
7 Mavis 1977-08-21 1981 840
8 Alvin 1998-04-17 2008 900

9 Ira 1993-07-17 2015 100
10 Dino 1968-12-26 2012 150
11 A. Bella 1989-11-26 2016 20

Memberrestaurant_id category
1 Fast Food
1 Take Away

2 Italian
3 Cafe
3 Italian
4 Light meal

5 Cafe
5 Light meal
5 Take Away

RestaurantCategory

visit_id member_id restaurant_id branch_no date score
1 1 4 3 2015-12-30 5
2 8 4 3 2016-01-15 4
3 1 2 1 2018-06-16 5
4 2 3 2 2018-06-14 5
5 1 2 1 2018-12-09 3
6 3 3 2 2018-01-16 6
7 2 4 1 2018-03-26 3
8 4 3 2 2018-08-02 7
9 5 3 1 2018-04-22 8

10 4 5 2 2018-05-10 0
11 5 5 2 2018-05-08 6
12 3 5 1 2018-06-21 1
13 6 5 1 2018-03-06 2
14 4 5 1 2018-02-12 3
15 7 4 2 2018-06-07 1
16 5 4 2 2018-12-04 2
17 3 4 2 2018-01-19 3
18 5 3 3 2018-01-27 5
19 7 3 3 2018-06-11 5

Visits

Restaurant

Set Operations

Section 11

Set operations

127

Answer of query A Answer of query B

A INTERSECT B

Set operations can be expressed in SQL using clauses
UNION, INTERSECT, EXCEPT.

Using the set operations can ease the design of SQL by
breaking down a complex query to a number of
simpler sub-queries.

A EXCEPT B B EXCEPT A

A UNION B

The UNION clause

128

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id= W.employee_id AND

(W. department_id = 1 OR
W. department_id = 3)

Query: Find the names of employees who work in department 1
or department 3.

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W.department_id = 1

UNION

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W. department_id = 3

Note : The two SQLs are NOT
equivalent to each other!
Duplicates are eliminated when
two sets are unified.

Employees
who work in

dpt 1.

Employees
who work in

dpt 3.

Employees who work in dpt 1 OR dpt 3

The INTERSECT clause

129

Query: Find the name of employees who work in department 1
and department 3.

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W.department_id = 1

INTERSECT

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W. department_id = 3

Employees
who work in

dpt 1.

Employees
who work in

dpt 3.

Employees who work in both dpt 1 AND dpt 3

Note : MySQL doesn’t support the
keyword INTERSECT.
But we can replace INTERSECT by
joining tables.

The EXCEPT clause

130

Query: Find the name of employees who work in department 1
but not department 3.

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W.department_id = 1

EXCEPT

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W. department_id = 3

Employees
who work in

dpt 1.

Employees
who work in

dpt 3.

Employees who work in dpt 1 but not in dpt 3

Note : MySQL doesn’t support the
keyword EXCEPT.
But we can replace EXCEPT by
using NOT IN.

Section 12

More on

Nested Queries

Nested queries

Nested queries have other subqueries embedded in
them.

May also be enclosed under FROM or HAVING clauses

Used for the ease of expressing a natural language
request in SQL.

Subqueries are usually nested under WHERE clauses.

132

The IN clause

In natural language : Find employee names whose
employee_id appears in the set of employee_ids working for
department 1.

Query: Find the names of the employees in department 1.

SELECT E.name
FROM Employees E, Works_in W
WHERE E.employee_id = W.employee_id AND

W.department_id = 1;

SELECT E.name
FROM Employees E
WHERE E.employee_id IN (

SELECT W.employee_id
FROM Works_in W
WHERE W.department_id = 1);

Just like searching
the employee_id in
the result of the
nested query.

133

The SOME clause
Query: Find department names that have greater budget
than some department where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > SOME(

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
); Find the

department ID where
employee 4 works.

134

The SOME clause
Query: Find department names that have greater budget
than some department where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > SOME(

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
);

Find the budget of
those departments.

Find the
department ID where
employee 4 works.

135

The SOME clause
Query: Find department names that have greater budget
than some department where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > SOME(

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
);

Find the name of
the department with
budget > some
budgets (those
returned by inner
query).

Find the budget of
those departments.

Find the
department ID where
employee 4 works.

136

IMPORTANT NOTE: If nested query result is
empty, then > SOME will return false for
every D.budget!

The ALL clause
Query: Find department names that have greater budget
than all departments where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > ALL (

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
); Find the

department ID where
employee 4 works.

137

The ALL clause
Query: Find department names that have greater budget
than all departments where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > ALL (

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
);

Find the budget of
those departments.

138

The ALL clause
Query: Find department names that have greater budget
than all departments where employee 4 works.

SELECT D.name
FROM Departments D
WHERE D.budget > ALL (

SELECT D2.budget
FROM Departments D2
WHERE D2.department_id IN (

SELECT W.department_id
FROM Works_in W
WHERE W.employee_id = 4

)
);

IMPORTANT NOTE: If nested query result is empty, then
> ALL will return true for every D.budget!

Find the name of
the department with
budget > ALL budgets
(those returned by
inner query).

139

The ALL clause

Question: What would the result be if >ALL is used?

Query: Find department names that have the greatest

budget than all departments.

SELECT D.name
FROM Departments D
WHERE D.budget >= ALL (

SELECT D2.budget
FROM Departments D2

);

Can you rewrite the above query
using Aggregate function MAX in a
nested query?

140

The EXISTS clause

Query: Find the names of employees who work in

department with department_id=1.

SELECT E.name
FROM Employees E
WHERE EXISTS (

SELECT *
FROM Works_in W
WHERE W.department_id = 1 AND

E.employee_id = W.employee_id);

The inner subquery could depend on the row
currently examined in the outer query.

EXISTS is a boolean set-comparison operator that
returns false if the input set is empty and true
otherwise.

For each employee
record r.

If the inner query
can return some
records, we will return
the record r.

141

Null values

Section 13

NULL value

null: unknown value or value does not exist.

SELECT name
FROM Employees
WHERE salary IS NULL

Use predicate IS NULL to check for null values.

Query: Find all employee names for which the salary is

unknown or undetermined.

Handling null values is a non-trivial topic in database
research.

Employees

employee_id name salary

1 Jones

2 Smith 28000

3 Parker

4 Smith 24000
143

NULL value

The result of any arithmetic expression involving null
is null.

5 + null returns null.

Any comparison with null returns UNKNOWN.

Both 5 < null , null = null return UNKNOWN.

Use P IS UNKNOWN to check if a predicate P is
unknown or not.

For the result of WHERE or HAVING clause, predicate
is false if it evaluates to UNKNOWN.

144

Three valued logic

OR AND NOT

T Un F

T T T T

Un T Un Un

F T Un F

T Un F

T T Un F

Un Un Un F

F F F F

T F

Un Un

F T

145

NULL value and aggregates

The statement above ignores null amounts.

All aggregate operations except COUNT(*) ignore
tuples with null values on the aggregated attributes.

SELECT SUM (budget)
FROM Departments

COUNT counts not null values only.
Departments

department_id name budget

1 Toys

2 Tools

3 Food 100000

SUM(budget) returns 100000.

COUNT(*) returns 3.

146
COUNT(budget) returns 1.

Views

Section 14

The CREATE VIEW clause

Views provide a mechanism to hide certain data from
the view of certain users.

Physical level

Logical level

View level

View 1 View 2 …

CREATE VIEW Employee_hide_salary AS (
SELECT employee_id, name
FROM Employees);

Syntax:
CREATE VIEW view_name AS <expression>

CREATE VIEW Dpt_size(name,num_of_employee) AS (
SELECT D.name, COUNT(*)
FROM Departments D, Works_in W
WHERE D.department_id = W.department_id
GROUP BY W.department_id);

148

Authorization

Section 15

Authorization

The DBA can grant access/update authorization to
users.

GRANT SELECT ON Departments TO Johnson, Brown

Syntax: GRANT <priviledge list>
ON <table name or view name>
TO <user/role list>

GRANT UPDATE(budget) ON Departments TO Johnson

GRANT UPDATE(budget) ON Departments TO manager

manager is not a username, it
is a role.

Johnson, Brown are usernames.

150

Authorization

Rights can be revoked.

REVOKE SELECT ON Departments FROM Johnson, Brown

Create a role.

CREATE ROLE manager;

GRANT manager TO Brown;

Grant a role to a user.

151

Assertion

Section 16

Assertions

An assertion ensures a certain condition will always
exist in the database.

CREATE ASSERTION EmpsNoLessThanDepts
CHECK (

(SELECT COUNT(*) FROM Departments)
<=

(SELECT COUNT(*) FROM Employees)
);

Assertions are checked every time the involved
tables are updated and they could be very expensive.

Assume that we want to enforce that the number of
departments cannot exceed the number of
employees at any valid instance of our database.

153

154

Section 17 With clause
A common table expression (CTE) is a named temporary

result set that exists within the scope of a single

statement and that can be referred to later within that
statement, possibly multiple times.

WITH cte1 AS (SELECT a, b FROM table1),
cte2 AS (SELECT c, d FROM table2)
SELECT b, d FROM cte1
INNER JOIN cte2
ON cte1.a = cte2.c;

155

Section 17 With clause

WITH cte (col1, col2) AS
(SELECT 1, 2
UNION ALL
SELECT 3, 4)
SELECT col1, col2 FROM cte;

156

Section 17 With clause

WITH cte (col1, col2) AS
(SELECT 1, 2
UNION ALL
SELECT 3, 4)
SELECT col1, col2 FROM cte;

157

Section 17 With clause
A recursive common table expression is one having a
subquery that refers to its own name.

WITH RECURSIVE cte (n) AS
(SELECT 1
UNION ALL
SELECT n + 1 FROM cte
WHERE n < 5)
SELECT * FROM cte;

158

159

WITH RECURSIVE fibonacci (n,
fib_n, next_fib_n) AS
(SELECT 1, 0, 1
UNION ALL
SELECT n + 1, next_fib_n, fib_n +
next_fib_n FROM fibonacci
WHERE n < 10)
SELECT * FROM fibonacci;

Section 17 With clause
A Fibonacci series begins with the two numbers 0 and 1 (or 1 and 1) and
each number after that is the sum of the previous two numbers.

END

Lecture 4

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A

Introduction to Database Management Systems

