
Lecture 3

E-R Model to

Relational Tables

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A

Introduction to Database Management Systems

Acknowledgement: Dr. Chui Chun Kit

E-R Diagram for a Banking Enterprise

Recap

Can you understand
the data model
captured by this E-R
Diagram?

Section 3.1

E-R Design

Decision

Entity sets v.s. Attributes

employee

phone

employee has phone

How do you model an employee and his phone
number?

Treat phone number as an attribute of an employee.

Treat phone as a separate entity.

1. In my company, an employee can
have multiple phone numbers…

V.S.

Entity sets v.s. Attributes

How do you model an employee and his phone
number?

Treat phone number as an attribute of an employee.

Treat phone as a separate entity.

2. In my company, a phone number can
be shared by multiple employee…

employee V.S. employee has phone

phone

Entity sets v.s. Attributes

How do you model an employee and his phone
number?

Treat phone number as an attribute of an employee.

Treat phone as a separate entity.

employee V.S. employee has phone

3. In the system, for each phone, I want
to keep a list of missed call numbers.

missed_call

phone

Entity sets v.s. Relationship sets

Use a relationship set to describe an action that
occurs between entities.

Hint: entity sets often have “nouns” as name, and
relationship sets have “verbs” as name.

Entity sets v.s. Relationship sets

How to model a loan?

1. As a Loan entity.

2. As a relationship between a customer and a branch.

Can we have joint loan?
(E.g., Do we need to express something like “A loan
can be associated with multiple customers”)

loan V.S. customer loan branch

A loan is an object in
this phrase.

Entity sets v.s. Relationship sets

Can we have joint loan?
(E.g., Do we need to express something like “A loan
can be associated with multiple customers”)

customer

borrower

loan V.S. customer loan branch

Section 3.2

From E-R Schema

to Relational Tables

Entity sets

customer

name address

customer_id customer_id name address

… … …

… … …

… … …

Customer (customer_id, name, address)

An Entity set (or another name, strong entity set)
reduces to a table with the same attributes.

Attributes

customer

name

address

customer_id

customer_id name.first_name name.last_name address

… … … …

… … … …

Customer (customer_id, name.first_name, name.last_name, address)

Composite attributes are flattened out by creating a
separate attribute for each component attribute.

e.g, name becomes name.first_name and name.last_name.

first_name

last_name

Attributes

employee
phone

employee_id name address

1 Kit …

2 Ben …

Employee(employee_id, name, address)

A multi‐valued attribute M of an entity set E is
represented by a separate table EM, with the
primary key of E as one of EM’s attribute.

employee_id phone

1 9123 4567

1 2987 6543

EmployeePhone(employee_id, phone)

name

employee_id

address

Weak entity sets

team_id player_number player_name

… … …

Player (teamID, player_number, player_name)

A weak entity set becomes a table that includes the
columns for the primary key of the identifying strong
entity set.

team player

team_id
player_name

belongs

player_number

Partial key (or discriminator)
of the weak entity set

Primary key of the
identifying entity set

Relationship sets

The reduction depends on their mapping cardinalities.

Many to many

One to many / many to one

One to one

Relationship sets

A many‐to‐many relationship set is a table with
columns for the primary keys of the participating entity
sets, and any attributes of the relationship set.

Team Sponsor

sponsor_id

has

team_id sponsor_id sponsor_date

1 1 2013-1-1

2 1 2013-9-1

sponsor_id …

1 …

2 …

team_id …

1 …

2 …

team_id sponsor_date

Team_asoc_sponsor
(team_id, sponsor_id, sponsor_date)

Team(team_id, …) Sponsor(sponsor_id, …)

Relationship sets

Many‐to‐one and one‐to‐many relationship sets that
are total on the many‐side can be represented by
adding extra attributes to the “many‐side”, containing
the primary key of the “one‐side”.

person_id …

1 …

2 …

car_number ownership_date person_id …

HV 2299 2013-10-1 1 …

HW 2149 2013-12-4 1 …

Car Person

car_number

person_id

own

ownership_date

Car (car_number, ownership_date, person_id,…) Person (person_id, …)

Relationship sets

For one‐to‐one relationship sets, either side can be
chosen to act as the “many‐side”.

address phone …

CB312 21234567 …

name office.address …

Professor Kao CB312 …

Professor Office

name

address

worksIn

name …

Professor Kao …

address professor.name phone …

CB312 Professor Kao 21234567 …

Professor(name, office.address,…) Office(address, phone, …)

Professor(name, …) Office(address, professor.name, phone, …)

OR

phone

Specialization (method 1)

Form a table for the higher‐level entity set.

Form a table for each lower‐level entity set, which
contains the primary key of the higher‐level entity
set and local attributes.

Person(name, street, city)

Customer(name, credit_rating)

Employee(name, salary)

ISA

customer

credit_rating

employee

salary

person

name

street

city

Disjoint

Specialization (method 2)

Form a table for each entity set with all local and
inherited attributes.

Person(name, street, city)

Customer(name, street, city, credit_rating)

Employee(name, street, city, salary)
person

customer employee

ISA

name

salary

street

city

Disjoint

What are the advantage and
disadvantage of method 1 and 2?
1. Storage redundancy?
2. Efficiency in retrieving data?

credit_rating

Specialization

Observation: If the specialization is total, the
generalized entity set may not require a table!

Person(name, street, city)

Customer(name, street, city, credit_rating)

Employee(name, street, city, salary)
person

customer employee

ISA

name

credit_rating salary

street

city

Disjoint

Section 3.3

Foreign Key

Example 1

To transform an ER model to
relational tables…
Step 1. Entity set -> table
Each entity set becomes a table.
Each attribute becomes a column.
Each entity is a tuple in the table.

Example 1

Author (authorID, name, date of birth)

Book (bookID, title, publisher)

Example 1

Author (authorID, name, date of birth)

Book (bookID, title, publisher)

Writes ()

Step 2. Relationship set
Whether a relationship set
becomes a table or not depends
on the mapping cardinality of the
relationship.
(many to many) , a table.

Example 1

Author (authorID, name, date of birth)

Book (bookID, title, publisher)

Step 3. Identify the key
What is the primary key of
each table? Any foreign keys?

Writes (authorID, bookID)

authorID is another Foreign key , this key is
referencing the column authorID in the
Author table

bookID is a Foreign key , this key is
referencing the column bookID in the Book
table.

Foreign key

A foreign key is a referential constraint between
two tables.

A foreign key is a field in a relational table that matches
a candidate key of another table.

It is used to link information together.

The foreign key can be used to cross-reference tables.

An essential part of database normalization (To be
discussed in Chapter 5).

Example 1

Author (authorID, name, date of birth)

Book (bookID, title, publisher)

Writes (authorID, bookID)

Foreign key: none

Foreign key: none

Foreign keys: {authorID} referencing Author

{bookID} referencing Book

Example 2

To transform an ER model to
relational tables…
Step 1. Entity set -> table
Each entity set becomes a table.
Each attribute becomes a column.
Each entity is a tuple in the table.

Example 2

Course (course code, name)

Tutorial (tutorial number, date, time, venue，course code)

Example 2

Course (course code, name)

Tutorial (tutorial number, date, time, venue, course_code)

Step 2. Relationship set
Whether a relationship set becomes a
table or not depends on the mapping
cardinality of the relationship.
(one to many or many to one),
attributes go to “many” side.

Example 2

Course (course code, name)

Foreign key: none

Foreign key: {course code} referencing Course

Tutorial (tutorial number, date, time, venue, course_code)

Step 3. Identify the key
What is the primary key of
each table? Any foreign keys?

Example 3

Customer (customerID, name)

Foreign key: none

VIP (customerID, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 1

Handling ISA relationship
Option 1 :
Form a table for higher-level entity set.
Form a table for each lower-level entity set,
which contains the primary key of the higher-
level entity set and local attributes.

Example 3

Handling ISA relationship
Option 2 :
Form a table for each entity
set with all local and inherited
attributes

Customer (customerID, name)

Foreign key: none

VIP (customerID, name, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, name, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 2

Example 3

Customer (customerID, name)

Foreign key: none

VIP (customerID, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 1

[Storage] Option 1 has less
storage redundancy.
[Efficiency] Accessing data (e.g,
retrieving the name and
discount_rate of a VIP) in option
1 requires accessing two tables
(not as efficient as option 2,
which requires accessing one
table only)!

Example 3

Customer (customerID, name)

Foreign key: none

VIP (customerID, name, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, name, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 2

Customer (customerID, name)

Foreign key: none

VIP (customerID, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 1

What are the advantage
and disadvantage of these

Example 3

Customer (customerID, name)

Foreign key: none

VIP (customerID, name, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, name, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 2

Customer (customerID, name)

Foreign key: none

VIP (customerID, discount_rate)

Foreign key: {customerID} referencing Customer

Member (customerID, accumulated_points)

Foreign key: {customerID} referencing Customer

Option 1

VIP (customerID, name, discount rate)
Foreign key: none

Member (customerID, name,
accumulated points)

Foreign key: none

Option 3

Total
specialization

Handling Multivalue
attributes
Multivalue attribute
becomes a table.

Example 4

Foreign key: none

Customer (customerID, name)

CustomerPhone (customerID, phone)

Foreign key: {customerID} referencing Customer

Lecture 3

END

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A

Introduction to Database Management Systems

