
Lecture 10

Indexing

Dr. Ping Luo
Email : pluo@cs.hku.hk

Department of Computer Science, The University of Hong Kong

COMP3278A
Introduction to Database Management Systems

Acknowledgement: Dr. Chui Chun Kit

Outcome 1. Information Modeling

Outcome 2. Query Languages

Outcome 3. System Design

Outcome 4. Application Development

Able to understand the modeling of real life information in a database
system.

Able to understand and use the languages designed for data access.

Able to understand the design of an efficient and reliable database
system.

Able to implement a practical application on a real database.

In this chapter…

2

We are going to learn…

3

Basic concepts

B+ -tree

Section 1

Basic
Concepts

Basic concepts

Index is used to speed up access to desired data.

E.g., Author catalog in library, phone directory index, etc.

Search key

An attribute or a set of attributes used
to look up records in a file.

Indices are typically much smaller
than the original file.

5

5

Primary v.s. secondary

However, the data file can be sorted in one order only.

Primary index - An index whose search key also
defines the sequential order of the file.

How about accessing data with
a different search key?

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

E.g., Access staff records through staffID
(primary search key).

staffID roomID faculty

E.g., Access staff records through
roomID (a secondary search key,
need a secondary index!).

49 C.S.
42 Finance
35 Music
10 Physics
15 History
18 C.S.
20 E.E.E.
3 Biology

31 Finance
5 Finance
2 C.S.

24 C.S.
6

Index evaluation factors

Each indexing technique must be
evaluated on the basis of these factors

Access time – The time it takes to find a particular data item,
or a set of items.

No one indexing
technique is the best.
Rather, each technique is
best suited to particular
database applications.

Insertion / deletion time

Access types – The types of access that are supported
efficiently (e.g., equality search or range search? Single
attribute search or multi-attribute search?)

Space overhead

8

Section 2

B+-tree

Properties of B+-tree

All paths from root to leaf are of the same length
(i.e., balanced)

B+-tree index structure is one of the most widely used
index structure in DBMS.

Can support efficient processing of the following
queries (Assume that the B+-tree is built on attribute A
of the relation R):

SELECT * FROM R WHERE R.A = 3

SELECT * FROM R WHERE R.A >= 3 AND R.A < 22
10

11

Why not binary search tree?

Balanced Binary Search tree minimizes the
number of key comparisons for finding a
search key. Why don’t we use balanced binary
search tree in Database?

Because we want to minimize
the number of block retrieval
in answering a query (i.e.,
number of tree nodes to be
accessed) rather than the
number of key comparisons.

We need a tree which is

Node size = 1 block
(A node can contain more
than one keys)

Low in height

Balanced

A node in B+-tree

A node contains up to n-1 search-key values, and n
pointers.

The search-key values within a node are kept in sorted
order.

n=4 pointers

n-1 = 3 search-keys

1 5 21 2 5

12

1. Leaf node

A leaf node has at least (n – 1)/2 and at most (n – 1)
values, where n is the number of pointers.

1 4

E.g., with n = 4, a leaf node must contain at least 2 values,
and at most 3 values.

6 9 11

The last pointer is used to chain together the leaf
nodes in search-key order.

13

1. Leaf node

The pointer before a search-key value points to the
record that contains the search-key.

1 4 6 9 11

1001 4 Ben 100

1003 1 David 150

1005 11 Kit 40

1006 9 Anthony 90

1011 6 Kenneth 110

14

2. Non-leaf node

Non-leaf nodes must hold at least n/2, and at most
n pointers.

E.g., with n = 4, a non-leaf node contains at least 2
pointers, and at most 4 pointers.

Leaf nodes

Non-leaf node

…

…

15

4

2. Non-leaf node

1 2 3Leaf nodes

Non-leaf node

…

The pointer on the left of a key K points to the part of
the subtree that contains those key values less than K.

The pointer on the right of a key K points to the part of
the subtree that contains those key values larger than
or equal K.

4 7 8

…

16

10101 49 C.S.
12121 42 Finance
15151 35 Music
22222 10 Physics
32343 15 History
33456 18 C.S.
45565 20 E.E.E.
58583 3 Biology
76543 31 Finance
76766 5 Finance
83821 2 C.S.
98345 24 C.S.

Example B+-tree

In the file, records are ordered
according to the 1st attribute,
we would like to build a B+-tree
index (secondary index) to
speed up the searching on the
2nd attribute.

17

32 5 1510 2018 24 3531 4942

1810 42

31

10101 49 C.S.
12121 42 Finance
15151 35 Music
22222 10 Physics
32343 15 History
33456 18 C.S.
45565 20 E.E.E.
58583 3 Biology
76543 31 Finance
76766 5 Finance
83821 2 C.S.
98345 24 C.S.

Example B+-tree

With n = 4, a leaf node must
contain at least 2 values, and at
most 3 values.

With n = 4, a non-leaf node must
contain at least 2 pointers, and at
most 4 pointers.

18

32 5 1510 2018 24 3531 4942

1810 42

31

10101 49 C.S.
12121 42 Finance
15151 35 Music
22222 10 Physics
32343 15 History
33456 18 C.S.
45565 20 E.E.E.
58583 3 Biology
76543 31 Finance
76766 5 Finance
83821 2 C.S.
98345 24 C.S.

Example B+-tree

19

Searching

32 5 1510 2018 24 3531 4942

1810 42

31

10101 49 C.S.
12121 42 Finance
15151 35 Music
22222 10 Physics
32343 15 History
33456 18 C.S.
45565 20 E.E.E.
58583 3 Biology
76543 31 Finance
76766 5 Finance
83821 2 C.S.
98345 24 C.S.

SELECT * FROM R WHERE R.B = 3

Point query

Step 1. Traverse
from root to
leaf.

Step 2. Search in the leaf node. Step 3. Follow the
pointer in the leaf
node to retrieve
the record.

With this B+-tree, how many disk
block accesses to answer this query?

31

10

3

20

Searching

32 5 1510 2018 24 3531 4942

1810 42

31

10101 49 C.S.
12121 42 Finance
15151 35 Music
22222 10 Physics
32343 15 History
33456 18 C.S.
45565 20 E.E.E.
58583 3 Biology
76543 31 Finance
76766 5 Finance
83821 2 C.S.
98345 24 C.S.

SELECT * FROM R WHERE R.B >= 3 AND R.B < 22

Range query

B+-tree can also handle range search
very well. Search for the left border of
the range and traverse the leaf chain
until a record with search-key larger
than the right border is encountered.

Start output Stop output

3 5 1510 2018

21

3

Insertion

Assume no duplicate entries are inserted, insertion is
simply searching + insert entry.

If a leaf node is full, node splitting has to be
performed.

21 53

Step 1. Create one more node and distribute the first n/2
records to one node and the remaining to the other node.

Step 2. Parent nodes (non-leaf nodes) have to be updated
accordingly.

32 5Insert key “1”
22

1. Node splitting (leaf node)

32 5 1510 2018 24 3531 4942

1810 42

31

Let’s learn how node splitting is
implemented on leaf node by considering
inserting key “1” in the above B+-tree.

23

32 5 1510 2018 24 3531 4942

1810 42

31

We first search for the leaf node that the key “1”
should be inserted.

Since this node is full, inserting “1” requires
SPLITTING this leaf node.

1. Node splitting (leaf node)

31

10

24

1510 2018 24 3531 4942

1810 42

31

Step1. Create one more node and
distribute the entries.

1. Node splitting (leaf node)

32 5

25

1510 2018 24 3531 4942

1810 42

31

53

Step1. Create one more node and
distribute the entries.

1. Node splitting (leaf node)

21

26

1510 2018 24 3531 4942

103 18 42

31

53

1. Node splitting (leaf node)

21

Step2. Update the parent.

3

27

2. Node splitting (non-leaf node)

Splitting of a non-leaf node is a little different from
splitting of a leaf node.

1510 2018 24 3531 4942

103 18 42

31

21 53

Let’s learn how node splitting is implemented on non-leaf node
by considering inserting key “26” in the above B+-tree.

28

1510 2018 24 3531 4942

103 18 42

31

21 53

“26” should be inserted into this leaf node.
Since this node is full, node SPLITTING need to be performed.

2. Node splitting (non-leaf node)

31

18

29

1510 3531 4942

103 18 42

31

21 53

2018 2624Step 1. Create one more node
and distribute the entries.

2. Node splitting (non-leaf node)

30

1510 3531 4942

103 18 42

31

21 53

2018 2624

Step 2. Update the parent (Parent node is full!)
As we cannot have 5 pointers stored in a non-leaf node, we
need to split this non-leaf node (Recursively).

?

2. Node splitting (non-leaf node)

31

1510 3531 4942

103 18 42

31

21 53

2018 2624

Splitting non-leaf node (Recursive)
Step 1. We first create a new node to accommodate the
new pointers (the 5 pointers, one for each leaf node).

?

2. Node splitting (non-leaf node)

32

1510 3531 4942

103 18 42

31

21 53

2018 2624

Splitting non-leaf node
Step 2. We distribute the pointers among the two
nodes.

2. Node splitting (non-leaf node)

33

1510 3531 4942

103 18 42

31

21 53

2018 2624

24

Splitting non-leaf node
Step 3. Then consider the keys that
are required in each slot among the
two nodes.

2. Node splitting (non-leaf node)

34

1510 3531 4942

103 42

3118

21 53

2018 2624

24

2. Node splitting (non-leaf node)

18

“18” is moved to the parent node to separate the search-
keys among the two nodes (if the parent node is full, split
the parent node recursively)

35

Deletion

Find the record to be deleted.

Remove it from the file and from the leaf node (if
present)

If the leaf node has too few entries due to the removal:

Try to MERGE the node with its sibling node.

Try to REDISTRIBUTE the entries if MERGING fails.

36

1. Merging

1510 2018 24 3531 4942

103 18 42

31

21 53

Let’s try to remove key “42” in the above B+-tree.

37

1. Merging

1510 2018 24 3531 49

103 18 42

31

21 53

Deletion may cause a node to underfull.
This node has only 1 value, which violates the
requirement that each leaf node must contain
at least (n – 1)/2 values (i.e., 2 in this case).

38

1. Merging

1510 2018 24 3531

103 18 42

31

21 53

Step 1. Merge with sibling node.

49

39

1. Merging

1510 2018 24 3531 49

103 18 42

31

21 53

After merging, this leaf node
is empty and no longer used.

40

1. Merging

1510 2018 24 3531 49

103 18

31

21 53

Step 2. Update the parents.

The parent node now contains too
few pointers. Remember we require
non-leaf node to have at least n/2
pointers.

41

1. Merging

1510 2018 24 3531 49

103 18

31

21 53

Recursively, we try to MERGE these 2 nodes.
However, the two nodes cannot be merged as the left node is
already full (4 pointers).

When MERGE fails, do REDISTRIBUTION!
42

2. Redistribution

1510 2018 24 3531 49

103 18

31

21 53

Redistribution
Step1. Redistribute the pointers.

43

2. Redistribution

1510 2018 24 3531 49

103 31

18

21 53

Redistribution
Step2. Update the keys.

44

45

Example 1

1510 2018 24 3531 49

103 31

18

21 53

Delete 35

46

Example 1

1510 2018 24 4931

103 31

18

21 53

Delete 35

After deletion, this node contains 2 values (VALID).
Remember the keys in a node should be in sorted
order.

47

Example 2

1510 2018 24 4931

103 31

18

21 53

Delete 49

Deletion of “49” causes this leaf node to contain only
one value, which is underfull.
First, try MERGE with its sibling node, but the sibling
node is full, so we need to do REDISTRIBUTION.

48

Example 2

1510 2018 3124

103 31

18

21 53

Delete 49
After REDISTRIBUTION, we need
to update the keys.

49

Example 2

1510 2018 3124

103 24

18

21 53

Delete 49

50

Example 3

Delete 18

Deletion of “18” causes this leaf node to contain only
one value, which is underfull.
First, try merge with its sibling node, which sibling
should be merged?

1510 2018 3124

103 24

18

21 53

51

Example 3

Delete 18

1510 2420 31

103 24

18

21 53

After merging, this leaf node
is empty and no longer used.

52

Example 3

Delete 18

Now this node has only one pointer,
which is underfull (1 pointer only).
We try merging it with its sibling.

1510 2420 31

103

18

21 53

53

Example 3

Delete 18
Merging non-leaf nodes
Step 1. Update the pointers.

1510 2420 31

103

18

21 53

54

Example 3

Delete 18

Merging non-leaf nodes
Step 2. Update the keys.
(It is “18” as originally it is the key “18” in the
root node that separate the two pointers.)

1510 2420 31

103

18

21 53

18

55

Example 3

Delete 18
Note that since we merged the non-
leaf node, some pointers and parent
entries can be removed.

1510 2420 31

103 18

18

21 53

56

Example 3

Delete 18

1510 2420 31

103 18

21 53

Defining index in SQL

To create an index:
CREATE INDEX <index-name> ON
<relation-name> (<attribute-list>)
[index_type]

Use CREATE UNIQUE INDEX to indirectly specify
and enforce the condition that the search-key is a
superkey.

To remove an index DROP INDEX <index-name>

57

Optional [index_type]: USING {BTREE | HASH}

Reference: MySQL 13.1.8 CREATE INDEX Syntax http://dev.mysql.com/doc/refman/5.0/en/create-index.html

http://dev.mysql.com/doc/refman/5.0/en/create-index.html

