
CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 1

Unit 3
Writing an introduction, and designing effective
visual aids
Overview

An effective introduction is crucial in arousing your audience’s interest, identifying a
knowledge gap, and facilitating the understanding of the remaining writing or oral presentation.
This unit will highlight its importance in writing with respect to its purpose, structures and
language features which you can apply in your project. Specific to oral presentation, techniques
and pitfalls of designing visual aids will also be discussed to help you to clearly and concisely
convey the appropriate technical information.

Learning outcomes

By the end of this unit, you will be able to:

• identify the purpose and structure of writing an introduction in a report
• distinguish the language choices in an introduction
• draft an introduction for a progress report for your project
• design effective visual aids for an oral presentation
• design and present figures and tables effectively in an oral presentation

(Warm-up) Critique an introduction

Read the following introduction of an interim report written by a previous student. Discuss
your comments with your partner.

Hint: Think about the purpose of an interim report as discussed in Unit 1.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 2

Text 1 [1]

TITLE: where2cut (a salon & hairstyle guide website)

INTRODUCTION

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 3

3.1 Purpose and structure of an introduction

An introduction

• is an overview of the background, with appropriate references, through which you show:

 what has been done by others in the area
 what opinions are given in the discussion
 how these opinions interact
 current status
 future directions

• defines problem to be solved (or a research gap to be filled)
• justifies and explains the importance/benefits of your work as a solution to the

problem (or to bridge the research gap)
• states the scope of your work (this can be a separate section if it is substantial)
• outlines deliverables (e.g., a computer program, technique, website, etc.)
• provides an outline for the remaining parts of the report

TASK 3.1 Identify the purpose and structure of an introduction

Work as a pair. Read an abridged version of an introduction of a technical report/paper below
titled “Example-Centric Programming: Integrating web search into the development
environment” [2]. Identify the features listed in the section.

Additional thoughts: Are you convinced of the benefits/motivations of the project? Is there
sufficient general and technical background information?

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 4

Text 2 [2]

TITLE: Example-Centre Programming: Integrating Web Search into the
 Development Environment

Figure 1. The Blueprint plug-in for the Adobe Flex Builder development environment helps
programmers engage in example-centric development. A hotkey places a search box
(A) at the programmerʼs cursor position. Search results are example-centric; each result contains
a brief textual description (B), the example code (C), and often a running example (D). Blueprint
also provides additional search suggestions (E).

INTRODUCTION

Programmers routinely face the “build or borrow” question [1]: should
they implement a piece of functionality from scratch, or locate and adapt
relevant existing code? Web search is fundamentally changing the cost
structure of this question [2]. It is now possible to quickly locate
example code that implements nearly any piece of routine functionality
[3]. This enables programmers to opportunistically build applications by
searching for, modifying, and combining short blocks of example code
taken from the Web [4-6].

 [text removed]

Finding appropriate code has become easier: there are many Web sites
dedicated to example sharing (e.g., the Flex Examples Blog [8]), online
opensource code repositories (e.g., Google Code [9]), and search
interfaces for programmers [10, 11]. However, these search tools are
still wholly separate from editing tools. Current development
environments provide little support for example-centric development.
Instead, they tacitly assume that programming begins tabula rasa and
that code is either written by the programmer or imported as a library
module.

Several difficulties arise from separate tools for editing and
search. First, the important link between borrowed code and its source is
lost. The programmer may not realize the code was borrowed from an

Put the
corresponding
function to the
right of the
text.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 5

online source; this can be valuable when debugging or modifying code.
If they do know it was borrowed, but not the URL, they may have
difficulty re-finding it if they would like to verify attributes or view
additional code and commentary. Second, if the source example is later
updated (e.g., to fix a bug), the programmer will never know. Finally, to
obtain relevant search results, programmers must manually specify
contextual constraints in their query, such as languages and frameworks
used. We hypothesize that there is significant value in integrating Web
search with a code editor. More specifically, this paper proposes that
automatically augmenting queries with code context and presenting an
example-centric view of search results increases the speed, quality, and
ease of programming by example modification. We introduce Blue-
print, an extension to the Adobe Flex Builder development environment
that manifests these ideas (see Figure 1).

This paper makes two contributions. First, it introduces a user interface
that integrates searching for example code into a development
environment. This search interface presents blocks of example code,
augmented with running examples and written descriptions when
available (see Figure 1). In a between-subjects comparison with 20
participants, we found that Blueprint enables participants to search for
and select example code significantly faster than with a standard Web
browser. Second, this paper introduces a technique for retrieving
relevant example code from the Web for a user’s query. To maximize
speed, breadth, and ranking quality, the Blueprint server leverages a
general-purpose search engine.

 [text removed]

The remainder of this paper proceeds as follows. First, to motivate
Blueprint’s interface choices, we offer background information on how
programmers use the Web to inform our design. We then present a
scenario enabled by Blueprint and describe its implementation and
evaluation. Next, we offer a discussion of the design space of tools to
support programmer Web use, and position Blueprint within this space
to better understand its strengths and limitations. We close with a
survey of related work and thoughts on future research directions.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 6

3.2 Language choice in an introduction – tense and voice

3.2.1 Use of tense

Different tenses are used in describing:

• general phenomena
• existing situation / current status (what has OR has not been done in the field)
• future plan / work to be done
• aim or organization of the report

Without strictly memorizing the use of specific tenses, try to recognize the tense used for
each function.

TASK 3.2 Identify the use of tense

Look at the highlighted tenses and verb forms in the extract below.

Present tense modal verb present continuous past tense present perfect

1. Go through each of the tenses highlighted in yellow. Why is this tense used rather than
other tenses?

2. What other tense / verb form can be used in the final paragraph?
3. Go through each of the tenses highlighted in green. Why is this tense used rather than

other tenses?
4. What are the differences in meaning between the pairs of sentences below:

a. Web search is fundamentally changing the cost structure of this question

b. Web search has fundamentally changed the cost structure of this question

c. Finding appropriate code has become easier:

d. Finding appropriate code is becoming easier:

5. Why use the modal verb in the first paragraph?

Text 3 [2]

TITLE: Example-Centre Programming: Integrating Web Search into the
Development Environment

INTRODUCTION

Programmers routinely face the “build or borrow” question [1]: should
they implement a piece of functionality from scratch, or locate and
adapt relevant existing code? Web search is fundamentally changing the

Comments

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 7

cost structure of this question [2]. It is now possible to quickly locate
example code that implements nearly any piece of routine functionality
[3]. This enables programmers to opportunistically build applications by
searching for, modifying, and combining short blocks of example code
taken from the Web [4-6].

In 1993, Nardi suggested that “programming by example modification”
holds significant latent value. An open question at the time was “how
users will find appropriate example code [text removed]

[text removed] Finding appropriate code has become easier: there are
many Web sites dedicated to example sharing (e.g., the Flex Examples
Blog [8]), online opensource code repositories (e.g., Google Code [9]),
and search interfaces for programmers [10, 11]. However, these search
tools are still wholly separate from editing tools. Current development
environments provide little support for example-centric development.
Instead, they tacitly assume that programming begins tabula rasa and
that code is either written by the programmer or imported as a library
module.

We hypothesize that there is significant value in integrating Web search
with a code editor. More specifically, this paper proposes that
automatically augmenting queries with code context and presenting an
example-centric view of search results increases the speed, quality, and
ease of programming by example modification. We introduce Blue-
print, an extension to the Adobe Flex Builder development environment
that manifests these ideas (see Figure 1).

This paper makes two contributions. First, it introduces a user interface
that integrates searching for example code into a development
environment. This search interface presents blocks of example code,
augmented with running examples and written descriptions when
available (see Figure 1). In a between-subjects comparison with 20
participants, we found that Blueprint enables participants to search for
and select example code significantly faster than with a standard Web
browser. Second, this paper introduces a technique for retrieving
relevant example code from the Web for a user’s query. To maximize
speed, breadth, and ranking quality, the Blueprint server leverages a
general-purpose search engine.
 [text removed]
The remainder of this paper proceeds as follows. First, to motivate
Blueprint’s interface choices, we offer background information on how
programmers use the Web to inform our design. We then present a
scenario enabled by Blueprint and describe its implementation and
evaluation. Next, we offer a discussion of the design space of tools to
support programmer Web use, and position Blueprint within this space
to better understand its strengths and limitations. We close with a
survey of related work and thoughts on future research directions.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 8

3.2.2 Use of First Persons

One common question in technical writing is whether first persons such as ‘I’ or “we”, should
be used. While there may not be a universal and hard-fixed rule, and the alternative of passive
voice is always available, the rationale depends on whether there is a need to highlight the
author when compared to the associated event.

TASK 3.3 Identify and explain using and not using first person

Look at the highlighted phrases in the text and answer the questions below:

1. The subjects of clauses have been highlighted as follows: people, things, other. Which
is the most common kind of subject? Why has the writer done this?

2. There is a phrase beginning with it in Paragraph 1. Can you think of any other phrases
beginning with it?

3. What does this refer to in Paragraph 1? Can this be replaced with it?

4. In Paragraph 2 why is Nardi the subject of the sentence?

5. Why do all the other citations not mention the authors of the sources?

6. In Paragraph 3 there is a reduced relative clause:
there are many websites (that/which are) dedicated to example sharing

a. Why is it reduced?
b. Can you find another example of a reduced relative clause in the text?

7. What does they refer to in Paragraph 3?

8. What does it refer to in Paragraph 5? Can it be replaced with this?

9. What does “we” refer to in Paragraphs 4 – 6?

10. If you have an individual FYP can you replace “we” with “I”?

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 9

Text 4 [2]

TITLE: Example-Centre Programming: Integrating Web Search into the
Development Environment

INTRODUCTION
Programmers routinely face the “build or borrow” question [1]: should
they implement a piece of functionality from scratch, or locate and adapt
relevant existing code? Web search is fundamentally changing the cost
structure of this question [2]. It is now possible to quickly locate
example code that implements nearly any piece of routine functionality
[3]. This enables programmers to opportunistically build applications by
searching for, modifying, and combining short blocks of example code
taken from the Web [4-6].
In 1993, Nardi suggested that “programming by example
modification” holds significant latent value. An open question
at the time was “how users will find appropriate example code… [text
removed]
[text removed] finding appropriate code has become easier: there are
many Web sites dedicated to example sharing (e.g., the Flex Examples
Blog [8]), online opensource code repositories (e.g., Google Code [9]),
and search interfaces for programmers [10, 11]. However, these search
tools are still wholly separate from editing tools. Current development
environments provide little support for example-centric development.
Instead, they tacitly assume that programming begins tabula rasa and
that code is either written by the programmer or imported as a library
module.
We hypothesize that there is significant value in integrating Web search
with a code editor. More specifically, this paper proposes that
automatically augmenting queries with code context and presenting an
example-centric view of search results increases the speed, quality, and
ease of programming by example modification. We introduce Blue-
print, an extension to the Adobe Flex Builder development environment
that manifests these ideas (see Figure 1).
This paper makes two contributions. First, it introduces a user interface
that integrates searching for example code into a development
environment. This search interface presents blocks of example code,
augmented with running examples and written descriptions when
available (see Figure 1). In a between-subjects comparison with 20
participants, we found that Blueprint enables participants to search for
and select example code significantly faster than with a standard Web
browser. Second, this paper introduces a technique for retrieving
relevant example code from the Web for a user’s query. To maximize
speed, breadth, and ranking quality, the Blueprint server leverages a
general-purpose search engine.

 [text removed]

The remainder of this paper proceeds as follows. First, to motivate
Blueprint’s interface choices, we offer background information on how

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 10

programmers use the Web to inform our design. We then present a
scenario enabled by Blueprint and describe its implementation and
evaluation. Next, we offer a discussion of the design space of tools to
support programmer Web use, and position Blueprint within this space
to better understand its strengths and limitations. We close with a
survey of related work and thoughts on future research directions.

3.3 Putting it all together

Now that you understand the purpose and structure of an introduction, and the rationale for
the choice of tense and voice, you can apply them in your report.

TASK 3.4 Draft an introduction of your Progress Report (25 mins)

Discuss your project with a peer or small group. Identify the main elements based on Section
3.1 which are specific to your project. Write a brief introduction of your report.

Hint: It is ok that you may not have all the background information available or are aware of
all the possible outcomes. You can just put in temporary placeholders. Also think of the
purpose of your progress report which focuses on reporting progress, which is different from
the final report shown. Subsections will help.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 11

3.4 Designing PowerPoint Slides

Your class teacher will cover some principles of effective visuals and ask you to complete
some activities.

TASK 3.5 Improve a PowerPoint slide of your project plan

Select one slide (preferably with technical details) from the presentation of your project plan.
Improve it with what you have learnt in this lesson. Present it to another group of students
not in your project. Also give feedback to the other students using the template “Peer
Review of Visual Aids” provided.

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 12

3.5 Presenting Figures and Tables

Why is it important?
Figures and tables are fundamental to the readers’ understanding of complex information.
When presented well, they can organise, summarise, visualise, and consolidate a significant
amount of data/results, refocus the readers after reading paragraphs of text, and provide new
angles for further development or discussions. However, failure to do so may give readers
negative impressions, such as a lack of preparation and inattention to details.

TASK 3.6 Compare two slides

Watch the following YouTube video from (00:00-01:05) and compare Slide #1 and Slide #2.
Discuss with a classmate which slide you prefer and why.

Animate Charts Properly in PowerPoint

https://youtu.be/MztrEvHATus
https://youtu.be/MztrEvHATus

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 13

TASK 3.7 Evaluate sample student slides

Below are two examples produced by past students. Discuss the visual aspects with a
classmate. How can you improve them?

Sample Slide 1

Sample Slide 2

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 14

TASK 3.8 Evaluate and present the slides

Below are two examples produced by past students. Discuss the visual aspects with a
classmate. Imagine you are the presenter; how will you present the information on the slides?

Sample Slide 3

Sample Slide 4

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 15

TASK 3.9 Improve and present your own figures and tables

Do you have a figure/table in one of your past reports/assignments? Show it to your
classmate and discuss how the visual aspects can be improved. Then take turns presenting the
figure/table to your classmate and offer him/her some useful feedback.

3.6 In summary, how are figures and tables presented?
There are diverse views on how figures and tables should be used in presentations (unlike in
written reports or dissertations where there are more consistent ‘rules’ for the formatting of
figures and tables). Some professional settings such as international conferences may have
strict guidelines for formatting, while others are more flexible.

Here are several suggestions when presenting figures and tables in a presentation.

1. include either a title or a caption to briefly describe the figure or table,
2. ensure that all axes, legends, annotations, and lines are clearly labelled in

charts/diagrams,
3. recreate tables on the slides instead of using screenshots,
4. ensure all visual elements within a figure/table are sharp and clear (e.g., no blurry lines,

no block coding artifacts, use vector graphics, and readable on computer screen from
at least 1m away),

5. add annotations to emphasize important data, if necessary (e.g., circle important
numbers)

6. cite the source of a figure/table if the figure/table is not produced by you (e.g., images
taken from the internet),

7. avoid packing a slide with too many figures and tables (i.e., usually maximum one main
figure or table per slide).

Here are some optional approaches to further improve the look-and-feel of figures and tables
in presentation.

1. Use coloured figures and tables instead of black-and-white ones,
2. Use consistent formatting style and sequential figure/table numbers throughout the

slides,
3. Use animated figures/tables (e.g., animated GIF) or videos to show movements or

trends in data/results.

3.7 Three steps for presenting figures and tables

When presenting a figure or table, use the following three steps:

Step 1: Say what the visual is about (e.g., title)
Step 2: Introduce the basic elements of the visual (e.g., axes, scale, legend, colours of lines),
Step 3: Talk about the main trends in the visual:

o Describe trends (e.g., highs, lows, peaks, troughs, clusters, slopes),
o Explain trends (e.g., why and how these trends appear),
o Describe the importance of these trends (e.g., how are these trends related to

your research aims/questions/design?)

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 16

3.8 Additional resources for presentation skills
Here are two more useful videos you should watch if you want to improve your presentation
skills:

1. 6 Things You're Doing WRONG⚡in PowerPoint

2. Presenting Research Results: Tables and Graphs

https://youtu.be/fJZi3ueyF54
https://youtu.be/_HmrpqnbGfM
https://youtu.be/fJZi3ueyF54
https://youtu.be/_HmrpqnbGfM

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 17

3.9 Over to you

Introduction does not only provide a so-called ‘preview’ of the rest of a piece of writing or
presentation. Consider it the first opportunity to justify ‘why’ you are pursuing your research
or study. Since it is generally more structured than other sections in a written or spoken text,
try to have a checklist to remind yourself of the essential elements as listed in Section 3.1.
Regarding effectively designing PowerPoint slides, see if you can use your slides to track a
simple storyline. If you can, your slides are focused, clear, and concise enough.

TASK 3.10 Reflect on this unit

Key points to remember

• Purpose of an introduction: Arouse audience attention, identify motivation, and

outline the remaining text
• Essential elements include: background, research gap/problem(s) to be solved,

motivation of the study, scope, deliverables, and outline.
• Use past tense to highlight specific literature and past studies (report of findings)
• DO NOT indiscriminately use present tense and passive voice.
• Use first persons to highlight personal reference to specific literature.
• Characteristics of a PowerPoint slide design: focus, clarity, conciseness, aesthetics.
• Use a specific type of graph for a specific type of purpose
• Always ‘speak’ to refer and highlight content on a PowerPoint slide. Content on a

slide does NOT speak for itself!

Homework and Preparation for the next session

• Prepare an introduction and background for your Progress Report

CAES9542 Technical English for Computer Science 2023-24

© Centre for Applied English Studies, HKU Page 18

References

[1] Adapted from student texts.

[2] Brandt J, Dontcheva M, Weskamp M, Klemmer SR. Example-Centric Programming:
Integrating Web Search into the Development Environment. Stanford Computer
Science Technical Report. Stanford University; 2009.

[3] Grussendorf M. English for Presentations. Oxford: Oxford University Press; 2007.

[4] Adapted from student texts.

	Unit 3 Writing an introduction, and designing effective visual aids
	Overview
	3.1 Purpose and structure of an introduction
	TASK 3.1 Identify the purpose and structure of an introduction

	3.2 Language choice in an introduction – tense and voice
	TASK 3.2 Identify the use of tense
	TASK 3.3 Identify and explain using and not using first person

	3.3 Putting it all together
	TASK 3.4 Draft an introduction of your Progress Report (25 mins)

	3.4 Designing PowerPoint Slides
	TASK 3.5 Improve a PowerPoint slide of your project plan

	3.5 Presenting Figures and Tables
	TASK 3.6 Compare two slides
	TASK 3.7 Evaluate sample student slides
	TASK 3.8 Evaluate and present the slides
	TASK 3.9 Improve and present your own figures and tables
	TASK 3.10 Reflect on this unit

	Key points to remember
	Homework and Preparation for the next session
	References

